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ABSTRACT

A numerical technique is formulated, in a computer program U2DILF, for the
solution of flow over an airfoil executing an arbitrary unsteady motion in an inviscid

and incompressible medium. The technique extends the well known Panel Methods for

steady flow into solving a non-linear unsteady flow problem arising from the

continuous vortex shedding into the trailing wake due to the unsteady motion of the

airfoil. Numerous case-runs are presented to verify U2DIIF computer code against
other theoretical and/or numerical methods as well as in cases where limited

experimental data are obtainable in literatures. These case-runs include airfoils
undergoing a step change or a modified ramp change of angle-of-attack, airfoils

executing harmonic oscillation in pitching and plunging motions and airfoils

penetrating a sharp edge gust.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannct be considered validated. Any application of these programs

without additional verification is at the risk of the user.
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TABLE OF SYMBOLS

A singularity-type indicator for uniformly distributed source
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Cx  x-force coefficient
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lay transverse translational position (positive downward)
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n, t unit vectors normal and tangential to panel

P static pressure

Poo freestream static pressure
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r scalar distance between 2 points indicated by its indices
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I. INTRODUCTION

A. GENERAL
In this thesis, a numerical method is formulated and coded in a FORTRAN

computer program, codename U2DIIF (Unsteady 2-Dimensional Inviscid
Incompressible Flow), to solve for the flow over an airfoil which is 6xecuting an
unsteady time-dependent motion in an inviscid, incompressible medium.

B. APPROACH

The basic approach to this problem is the extension of a very general and
powerful technique, called Panel Methods, developed by Hess & Smith [Ref. i] for
steady potential flow problems, to include the unsteady motion of the airfoil that is
continuously shedding vorticity into the trailing wake. This vortex shedding process
creates the non-linearitv effects of the problem in that the wake vortices influence the
flow over the airfoil which in turn alters the vortex shedding as the arfoil proceeds in

time. It is this very non-linearity of unsteady flow that distinguishes itself from the well
known steady Panel Methods solution where the mathematical formulation of the
problem results in a set of N linear equations in N unknowns which are solved easily
with the standard Gaussian elimination algorithm.

The unsteady flow problem is, however, deprived of this relatively easy solution
technique. Instead, an iterative type of solution is needed for this non-linear problem.

The correct mathematical model must therefore be formulated to describe the vortex
shedding process that provides the mechanism for the iteration to proceed towards a

converged set of solution in each time step.

It is the objective of this thesis to develop a numerical computer program that
performs this non-linear potential flow calculation which proceeds step by step in time.

At each time step. a complete set of ootential flow solutions, inclusive of the airfoil

-"ressure .istribution. :orce arid -noment _oefflic:ents. and the trailing vortex wake
pattern (strengths and positions of shed vortices), is obtained.

C. SCOPE
The Panel Method of Hess & Smith, which utilises both the distributed sources

and vorticities as panel singularities, for steady flow solution is described in Chapter II.

14



Chapter III formulates the mathematical model for the unsteady flow problem

and its soiution procedures, highlighting the essential features in solving the non-linear

problem of unsteady flow.

Chapter IV describes the computer program U2DIIF, its essential capabilities,

limitations and the necessary input set-up for typical case-runs.

The results of some of the case-runs are presented in Chapter V. They are

compared with other theoretical and/or numerical methods as well as in cases where

limited experimental data are obtainable in the literature. These case-runs include

airfoils undergoing a step change or a modified ramp change in angle-of-attack, airfoils

executing harmonic oscillation in both pitching and plunging motions and airfoils

penetrating a sharp edge gust.

In the concluding remarks of Chapter VI, the future development and application

potential of this numerical method to other studies of unsteady 2-dimensional inviscid

incompressible flow are mentioned.

15



II. STEADY FLOW PROBLEM FORMULATION

A. FRAME OF REFERENCE

Consider a 2-dimensional airfoil in motion with constant linear velocity - V.0 as
shown in Figure 2.1. Using an (x,y) coordinate system fixed on the airfoil, where the x-

axis coincides with the chord line originating from the leading edge towards the trailing

edge of the airfoil, the flow in this frame of reference is steady. That is to say, the fluid

velocity and pressure in the flow field depend only on the spatial coordinates (x,y) and

not on time. The airfoil then appears to be submerged in an onset flow whose velocity

is Voo and making an angle of attack, a, with the x-axis (see Figure 2.1).

B. STEADY FLOW PANEL METHODS

1. Definition of Nodes and Panels

The airfoil surface is divided into (n) straight-line segments. called panels. by

(n-I 1) arbitrary chosen points, called nodes, distributed over the airfoil contour as

shown in Figure 2.2. The panel numbering sequence starts with panel I on the lower
surface at the airfoil trailing edge and proceeds clockwise around the airfoil contour so

that the last panel (panel n) ends on the upper surface, also at the airfoil trailing edge.

Notice that this numbering sequence dictates that the airfoil body always lies

on the right hand side of the ith panel as one proceeds from the ith node to the (i+ l1th

node. Also the I't and the (n+ 1)th nodes coincide at the trailing edge. It therefore

facilitates, as shown in Figure 2.2, the common definition of unit normal vector ni and

the unit tangential vector ti for all panels, i.e., ni is directed outward from the body into

the flow and ti is directed from the ith node to the (i+ 1)th node.

2. Distribution of Singularities

Figure 2.2 also indicates that a uniform source distribution qj and a uniform
vorticit: distribution y are placed on the ith panel. The source strength q; varies from

panei :o panei waereas :he vorticity strength y remains the same "or all pane;s, '.s
particular choice of singularity distributions is one of the many types of singularity

combinations (it happened to be the pioneering one though) ever used in a wide variety

of the so called Panel Methods. The success of representing the flow past an arbitrary
shaped airfoil by surface singularity distributions lies in the fact that these singularity

distributions automatically satisfy Laplace's equation, the governing flow equation for

16
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Figure 2.1 Frame of Reference for Steady Flow.
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Figure 2.2 Panel Methods Representation for Stcady Flow.



inviscid incompressible tiow, and the boundary condition at the far field (00. In

addition, the superposition principle appiies to any linear homogeneous second order

partial differential equation such as Lapiace's equation. Theretbre one can build up an

overall complicated flow field by the combination of simple flows if the appropriate

boundary conditions on the airbil can b'e satisfied accurately. For our case the overall

flow field (represented by the velocity potential D) can be built up by three simpie

flows,

( - o (Ps - (PV (eqn 2.1)

where (poo is the potential of the onset flow,

(P V M (x cosa - v sint) (eqn 2.2)

(p, is the velocity potential of a source distribution of strength q(s) per unit length,

,n r ds (eqn 23)

(PV is the velocity potential of a vorticity distribution of strength y(s) per unit length.

9 -(s) 0 ds (eqn 2.4)

The integrals in Equations 2.3 and 2.4 are performed along the surface

contour s and (r,O) are polar coordinates of any field point (x,y) measured from the

airfoil surface at an arbitrary point as shown in Figure 2.3. The difficult task of

evaluating these integrals has been greatly simplified by our singularity distributions

,ostulated :o represent :he 2ow ,vcr -he iiroii: "hat :s. 'nstead it" ntegrating -ver he

N cnrrc urbii contour. -.e :ntegratce n eaca panci :,ionz i straiht ine wvhere qi. an.,

are constant, then sum up the effects of all panels. Equation 2.1 therefore becomes,

n
,D- Voo(xcosa + ysina) + L Ini r -lnr-- 0]ds (eqn2.5)j27c 27E

19
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y Field Point

r

(D Vx( cs +v ia)+ q(s) Ir s Y(s)
0=V0(xosai-2inu 2n J nrs- - ds

Figure 2.3 Potential Evaluation at a Field Point.
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It can be seen from Equation 2.5 that (D is completely defined if the (n-'- 1)
unknowns, q. (j = 1,2,.,n) and -i, can be calculated using a numerical technique yet to
be described. Once the potential 4 is solved, the velocity can be evaluated by taking
grad 4D. At this point we introduce a definition of disturbance potential, gp, as the sum

* . of potential due to both the source and vorticity distribution,

"P P= S + (PV (eqn 2.6)

Equation 2.1 therefore reads.

=goo + 9 (eqn 2.7)

The total velocity vector is thus,

V =qtotaL
= VpO~ + (

"" = o + VT (eqn 2.S)

The pressure can be obtained from Bernoulli's Equation,

.- .i P - Poo _1 toa )2 qn29
= 1- (eqn 2.9). C -2pV° 2  1- -

Notice that Figure 2.3 indicates that the field point lies off the airfoil surface,

however, we are interested in field points that are on the airfoil surface. In the case of
steady flow, the expressions for Vtot.1 and CP are the same for field points lying on or
off the airfoil surface. It is nevertheless not the same in unsteady flow, as will be seen

in Chapter III. in that V*otal must include the rigid body motion of the airfoil when -nc
evaluates tieid points on :he airtbii .;uriuce.

3. Boundary Conditions

The boundary conditions to be satisfied include the flow tangency conditions
and the Kutta Condition. The flow tangency conditions are satisfied at the exterior mid

points, called control points, of all panels by taking the resultant velocity at each
control point to have only (Vt)i but,

Q21
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-- -u -u -- -- -----

(Vn)i = 0, i 1,2 ...... n (eqn 2.10)

where (V). and (V'). are the tangential and normal components of the total velocity at

the control point of the it" panel due to the free stream and the velocities induced by

the source and vorticitv distributions on ail the panels. j -,; = 1 ...... n).

The Kutta condition postulates that the pressures on the upper and lower

panels at the trailing edge be equal in order that the flow leaves the trailing edge

smoothly. By using Bernoulli's equation for steady potential flow, this pressure

equilibrium condition implies that the tangential velocities in the downstream direction

at the 1" and the n' panel control points must be equal. This fact is certainly

consistent with the knowledge that when steady flow is established, the total circulation

over the airfoil does not change if the tangential velocities are the same at the trailing

edge panels.

-' (V)l = (Vt)n (eqn 2.11)

If one could explicitly express Equations 2.10 and 2.11 in terms of the unknowns
qj (j= 1,2,. .... n) and y, the task is then reduced to solving a linear system of (n+ 1)

simultaneous equations for the (n+ 1) unknowns.

C. INFLUENCE COEFFICIENTS

1. The Concept of Influence Coefficients

The numerical technique employed in Panel Methods to manipulate

equations 2.10 and 2.11 into an algebraic system of linear simultaneous equations

involves the important concept of influence coefficients. An influence coefficient is

defined as the velocity induced at a field point by a unit strength singularity (be it a

point singularity or a distributed singularity) placed anywhere within the flow field. In

this case, it is the unit strength singularity distribution on one panel. Recall that

equations 2.10 and 2.11 simply require the computation of the normal and tangential

.e-octt,: 'om onent.s -t 2ii J" e "':l, , OTltrOi .'0 ltS. -,Ie .,or iai .3-none,= s n'

velocities are essentiai in satisfying ilow tangency conditions while the tangentiai

components of velocities are necessary for satisfying the Kutta condition as well as

computing the pressure distribution. The procedure is thus to compute, at the it panel

control point, the velocity components induced by the source and vorticity

distributions on all the panels, j (j 1,2 ...... ,n), including the iP panel itself. Summation
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of all the induced velocities, separately for the normal and tangential components,
together with the free stream velocity components produces all the required (Vn) and

2. Notation for Influence Coefficient
We shall adopt a consistent set of notation for the influence coefFicients used

throughout this documentation. It is so designated to permit easy recognition in that

each influence coefficient contains all the associated information one needs. An

influence coefficient is denoted with a superscript and two subsript as follows:

x Spq

where X denotes the type of singularity involved, we shall arbitrarily use A, B and C for

the unifrmly distributed source. uniformly distributed vorticity and point vortex

respecivei.. The superscript s is an indicator relling which component the induced
velocity is. The tirst subscript p identifies the field point where the induced velocity is

evaluated. The second subscript q denotes the oar:icular singulantv contributing to the
,_ m~uc--d ,'eiocl-v.

We thus define, for the steady ilow problem, the foilowing influence

coefficients :
0 A'.. : normal velocity component induced at the ith panel control point by unit

strength source distribution on the jt" panel.
* Atij : tangential velocity component induced at the it panel control point by

unit strength source distribution on the j'h panel.

* Bn.. : normal velocity component induced at the ith panel control point by unit
strength vorticity distribution on the jth panel.

• Bt.. : tangential velocity component induced at the ith panel control point by
unit strength vorticity distribution on the it" panel.

3. Computation of Influence Coefficients

The influence coefficients turn out to be related, not surprisingly, to the
geometrr of the airfoil and -he manner in which the pane!s are formed. Specifically. as

,v • ?,- ,, :n A' Ind "3- .ience "oe,:c- .m 0 inifor-U! iszriUt

source or vorticity are tnctions of:
• The natural logarithm of the ratio of distance from the i t' panel control point

(the field point) to the (j + 1)th and jth nodes of the jt panel where singularities
are distributed.

1C's coefficients will be needed only for unsteady flow.
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• The angle, in radian, subtended at the i h panel control point (the field point) by

the J - 1)h and Ih nodes " e ith panel where singularities are distributed.

* The trigonometry angles of !he P' and :thj panels.

Referring to the geometrical quantities indicated in Figure 2.4, the

expressions- for these influence coefficients are

II

As.. 21 [ sin(.-Oi)ln r + cos( .- e) 0)I ], for i j

P-- for i =j (eqn 2.12)

At.; - [ sin(0 i - 0 i- cos(0i - 0,) In , for i j
=0 ,ofor i j (eqn 2.13)

3.l- :csH,9 -'.r, - - sint0.-i0, 3- .U for j

'1

-0 , for i j (eqn 2.1-4)

I
Bt.. = - cos(O - 0) Pii + sin(O0 ) ri. + , for i z jijr i

2 , for i = j (eqn 2.15)

where

ri+ = (xmi - Xj + 1 )2 + (ym i - yj + 1)21

r. - ./ [(xm. - x:) 2 4- (ym: -:) 2

= _. = i - ,i

ymi = ,6(yi+Yi+1 )

2Actual computation uses At ij -Bnij and Bt ij = Anij to reduce computing
time.
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Figure 2.4 Influence Coefficients due to Uniformly Distributed Singularities.
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V. -V.

0. = arctani

. arctan( Yi- I -Yi

Jii = arctan( Yr - Yi + 1) -arctan( ym - YixM I - xi + I xmi1 - xi

D. NUMERICAL SOLUION SCHEME

1. Rewriting the Boundary Conditions

Using the concept of influence coefficients, the flow tangency conditions of

Equation 2.i0 can be expressed as.

n n

[Ai qn : + Y B n' j  V V (- sin(u- 0) = 0 , i= 1,2 ..... n (eqn 2.16)
, I= I

The Kutta condition of Equation 2.11, in terms of influence coefficients, looks

as,

n n
- F [ Atli qj I - y Btli - Voo cos(u -0 1 )

j=1 j=I

n n
- [At j qj ] + y V B' i + Voo cos(a-0.) (eqn 2.17)
i=t i--1

The negative signs appearing on the left-hand-side of Equation 2.17 are a
direct consequence of our definition of unit tangential vector. In other words, the

tangential velocities on the lower surface panels downstream of the front stagnation
? oint cIiue" negative vzaiucs. This ;eature !n 'iac: ailows )ne o 7redict -!i e ;'n

stagnation point oy interpolating the velocity distribution around the leading edge.

2. Solving the Strengths of Source and Vorticity Distributions

It is not difficult at this stage to see that if we collect the like terms in
Equation 2.17 and expand Equation 2.16 for all i's (i= 1,2,.,n), these equations

constitute none other than a linear algebraic system of (n+ 1) equations as shown in

the matrix Equation 2.18.
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a11  a,., a .3  .q, b
a2 1  a2, 2  a2, 3. . . . .  . . a.n - q&

a3,1 a3,, a3,3  . . . . . a ,a .- I q3  b3

. . . . . . . . . . . . . . . . fi . (eqn 2.18)

anl n.2.. ann+ j LnIL

Equation 2.18 is a set of linearly independent equations which can be easily

solved by any standard linear system solver, one of which is the well known method of

Gaussian Elimination with Partial Pivoting.

3. Computation of Velocity and Pressure Distribution

Once the q (J; = 1,2....,.) and 7 are soived. the velocities at all the panel

control points can be evaluated. Only the tangential components exist since the normal

components are already set to zeroes by the flow tangency conditions.

Va - (Vt) i , i= 1,2 ...... n (eqn 2.19)

where

n n
(vt)i [Ati qi ] + y I B t'" + V00 cos(a- 0i) i= 1,2,....n (eqn 2.20)

-- ffi J=l

Substituting Equation 2.20 into the C p equation (Equation 2.9), the pressure

coefficients at the ith panel control point is

(C I): = 1 - (Vt). 2  i= 1.2 ...... n (eqn 2.21)

4. Computation of Forces and Moments

The two dimensional aerodynamic coefficients of lift (CC), drag (Cd) and

pitching moment (Cm) about the leading edge are computed by integration of the

pressure distribution assuming constant C exists in each panel. The computation is
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first done by integrating, forces in the airfoil-fixed coordinate system followed by a

rotation to the respective lift and drag directions along and perpendicular to the free

strerm (VX) as follows

C (.Cix X) (eqn 2.22)

n
CP~ = 'C)(Yj I - Y) (eqn 2.23)

n
Cm M (C~ [ (xj + 1 - X) xm1. + (VII +-y) yin1  (eqn 2.24)

Cd = C. cosa + C Y sina (eqn 2.25)

Ct= C Y cosa - C.X sina (eqn 2.26)
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III. UNSTEADY FLOW PROBLEM FORMULATION

A. OVERVIEW OF UNSTEADY FLOW MODELING

1. Some Previews
Having fully understood the Panel Methods formulation and solution for the

steady flow problem, one could then venture into the interesting and complicated

unsteady flow case. In this Chapter, we shall see how we could build the time-

dependency into the Panel Methods solution which has been proven to be an useful

and accurate tool for steady flow. The approach in the unsteady flow problem

formulation will proceed, in general, in a manner similar to Chapter It. However, as we

go along, we will pick up the highlights of the essential differences also similarity)

between the two problems. Additional flow modeling of the vortex shedding process

that greatly influences the numerical solution technique3 will be discussed in details.

2. Specific Unsteady Flow Model

Recall that in steady flow, the problem is considered solved as soon as the

airfoil surface singularity distributions of source and vorticity q (j = 1,2 .....,n) and y are

determined. These (n + 1) unknowns are, however, time dependent in unsteady flow.
We therefore introduce a subscript k as the time-step counter; that is, we postulate to

solve the unsteady flow problem at successive intervals of time, starting from to =0. At

each time-step tk (k= 1,2 .... ,00), we represent the airfoil by surface singularity

distributions consisting of source distribution (qi)k (J = 1,2 .....,n) and vorticity

distribution Yk" Again the source strengths vary from panel to panel but the vorticity

strength remains the same for all panels.
The overall circulation rk at time-step tk is simply Yk multiplied by the airfoil

perimeter, f. Since the total circulation in a potential flow field must be preserved

according to the Helmholtz's theorem of continuity of vorticity, any changes in the

circuiationon the airbii surface -nust be manfested by an equal ..d opposite change

in vortic,,y in the wake. We cail .his -he .-orrex shedding process and postulate. as

shown in Figure 3.1, that this shed vorticity takes place through a small straight line
wake element attached as an additional panel to the trailing edge with uniform vorticity

distribution (Yw)k' We shall from now on refer to this panel as the shed vorticity panel,
The shed vorticity panel will be established if its length Ak and inclination 9k, to x-

3Referring to the switch from a direct scheme to an iterative scheme.
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axis of the airfoil-fixed coordinate system, satisfy the Heimihoitz's theorem as foilows,

Ak " Iw + r = r,- (eqn 3. 1)

or A., (Y,V rkl. - F - (eqn 3.2)

where rk-1 and Yk-1 are respectively the total circulation and vorticity strengths which
are already determined at a time-sten tk-1 before tk.

Let us project one time step ahead zo tk ---1 we allow the shed vorticity panel
to be detached from the trailing edge and get convected downstream as a concentrated

free vortex, with circulation Ak (yw)k or Fk- rFk , according to the resultant local
velocity occurred at the center of the vortex core. At the same time a brand new shed
vorticity panel is formed for the new time step and the process is repeated. Therefore
the shed vorricit7 panel model provides exactly :he desired communication mechanism

to carry :he solution from one time-step to another.

We now -eturn back to the time-step -.- and immediately realise that as a
result of :IUs 2ontinuous vortex shedding, there has been a series of shedding processes

occurred prior :o tk that cummulated in a string of concentrated core vortices of

strengths (rk-2- k-l)' (rk. 3 - k.2) , (Fk-4- k.3)..... and so on, forming the
wake pattern behind the airfoil as shown in Figure 3.1

The presence of the shed vorticity panel and the downstream resultant wake
core vortices do influence the upstream flow in inviscid incompressible flow. In

particular the shed vorticity panel itself depends on Yk to determine its distributed

vorticity (yw)k, this in turn causes changes to (q,)k and ?k" Moreover, the downstream

core vortices that constitute the wake are convected under the influence of the free
stream and the singularity distributions on the airfoil surface panels including the shed
vorticity panel. The problem is thus seen to be coupled from this analytical

standpoint. Putting this in simple mathematical terms, the algebriac system of
eq uations (Equation 2.18). representing the '.vow tangency conditions and Kutta
;ondition :r teadv flow, are no ion.,er inear . ccause _he -oe,c:cnts a..n e e,-
hand-side matrix are not constants anymore. They are function of q, and y instead.

The presence of non-linearity is indeed what drives the solution scheme into an
iterative type for unsteady flow.
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3. Boundary Conditions

We next investigate whether our unsteady flow model is sufficiently

represented, beore we could proceed :o search Cor a numerical iterative solution, by

matching the unknowns with the available boundary conditions at time-step tk. Recall

:hut w ' ave :.troduc..d hree -ore unknowns , ' k Ak and 0 k in addition to

q (j= 1,2...... n) and We have, however, so far only identified an extra boundary
condition, namely the Helmholtz's theorem (Equation 3.2) in conjunction with the flow

tangency conditions at the n panel control points and the Kutta condition of pressure

equilibrium at the trailing edge panels. Clearly we are in deficit of two additional

c onditions 'efore attempting further endeavour to solve the entire system. Basu and

Hancock [Ref 3] suggested the following assumptions:

* The shed vorticity panel is oriented in the direction of the local resultant
velocitz: at the panel -nid point.

0 The length of the shed voraicity panel is proportional to the magnitude of the
resuitant velocity at the panei md point and the step size of the time-step.

Following rhese assumptions thus permits us to formulate two more boundary

• onditions as foilows.

~(V )k

tanO (V k (eqn 3.3)
k (UW)k

A k = (tk - tk-l) (Uw)k 2 + (Vw)k2 (eqn 3.4)

where (Uw)k and (Vw)k are the total velocity components in x and y directions of the

airfoil-fixed coordinate system.

The flow tangency conditions are still,

[(Vn)ilk = 0 , i= 1,2,.,n (eqn 3.5)

.ow'e'.er. :z'.e :ta conditior -iust now inchdie :he ratcs n ch% ..

potential at the trailing edge panels (unsteady Bernoulli's equation) which can be

related directly to the rate of change of total circulation. By using a backward finite

difference approximation for this rate of change of total circulation, we express the

Kutta condition as shown in Equation 3.6.
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[(Vt)Ilk2 - [(,t).k 2 = 2 [ () - p 1k = 2 ( )k

= 2 Yk - Yk- (eqn 3.6)
tk - tk- 1

B. RIGID BODY MOTION AND FRAME OF REFERENCE

Consider a rigid airfoil executing a time-dependent motion, comprising linear
translation and angular rotation about the leading edge in an inviscid incompressible

medium. We can describe this arbitrary motion at any time instant tk as the vector sum
of a mean velocity -Voo, a time dependent translational velocity - [U(t) i + V(z) j]
and a rotational velocity -n(t) where i & j are unit vectors in the airfoil-fixed

coordinate system as shown in Figure 3.2.

If we continue, as in steady flow. to determine the flow with reference to the (x.y

coordinate system fixed on the airfoil, an observer sitting on this frame of reference

sees an unsteady stream velocity, Vstream, made up by the vector sum of a mean
vc:ocity VX., a time dependent translational velocit-. rLUt) 1 - 'At) i] and a -otationai

velocity !n(t). Therefore in this frame of reference, unlike the previous asc where the

airfoil is allowed to move only with constant linear velocity, the flow is still unsteady in

that Vstream is time dependent.

Vstream = Vo + [L (t) i + V(t) )] + n(t) (y i - x j) (eqn 3.7)

We redefine our disturbance potential to include the potential contributions (0w

and (9c, from the shed vorticity panel and the wake core vortices respectively. Thus

4" = (P + 9V + Pw + (PCV (eqn 3.8)

We then write the total velocity with respect to this frame of reference as.

total = Vstream "  7V eqpn .

Notice that this total velocity is obviously NOT the absolute velocity with respect
, to an inertial coordinate system. Such an inertial coordinate system will be the one

where an observer only sees an on-coming flow of V.0 with constant magnitude and
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direction. We have to make this distinction clear because in our model on convection

of' core vortices, we break uo the caiulation into two steps; we first convect the core

vortices using the resultant absolute velocity with respect to an inertial coordinate

system, followed by determining their positions with coordinates relative to the airfoil-

,xed axes.

The unsteady flow Bernoulli's equation for the pressure coefficients on the airfoil

surface must be ritten with respect to the airfoil-fixed coordinate system also. Giesing

[Ref. 4] showed this to be written, in our notation, as :

P-PX V~t V I2 (c = Vstream total I a310- (- ( )-- (eqn 3.10)

w shere Vseam, and V are defined according to Equations 3.7 and 3.9.

EQuations 3.8, 3.9, and 3.10 can be correlated to their counter-parts in steady

flow, namely 2.6, 2.3 and 2.9 respectively with Vsu.eam of Equation 3.7 replacing the

V. :n -ouation 2.3.

C. TIME-DEPENDENT INFLUENCE COEFFICIENTS

1. Definition of Time-Dependent Influence Coefficients

The influence coefficients, Ai, Atii , Bn.. and Bt.., involving the source and

vorticity distributions described in Section C of Chapter II are still useful. These are

indeed time-independent coefficients since they are functions of geometrical parameters

i which are fixed in our rigid airfoil. Additional influence coefficients involving the shed

vorticity panel and the wake core vortices must be defined. These coefficients need to

be computed in each time step since their positions vary relative to the airfoil-fixed

coordinate system. For that matter, as will be made clear later, those influence

coefficients involving the shed vorticity panel must also be computed in every iteration

within each time step for the same reasoning.

a. More .4's and B's Influence Coefficients

,Yilow:ng -ne -otauons isecd -reviousirn steady ;Iow. we i::::. ,vitn he

use or :-e k-subscript :o denote lime-iependency, additionai influence coelficients

involving uniformly distributed singularities of source and vorticity. They are the A's

and B's coefficients
(Bn i,n+ )k :normal velocity component induced at the ith panel control

point by unit strength vorticity distribution on the shed vorticity panel at time
tk•
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* (B: .n. ') "tangential velocity component induced at the it" panel control
point by unit strength vorticity distribution on the shed vorticity panel at time

1k,

(A-c . x-velocity component induced at the shed vorticity panel midont by unit strength source distribution on the jh panel at time tk .

: a- k * : y-veiocit:: component induced at the shed vorticity panel mid
point oy unit strength source distribution on the ji panel at time tk.
(BX n + 1.)k : x-velocity component induced at the shed vorticity panel mid
point by unit strength vorticity distribution on the jth panel at time tk.

B.nijk . y-velocity component induced at the shed vorticity panel mid
point by unit strength vorticity distribution on the jth panel at time tk.

t "x-velocity component induced at the center of the hth core
vortex by unit strength source distribution on the jth panel at time tk .

: y-veiocit comionent reduced at the center of the ht core"onex~~; byui te anel at time zkunit strength source distribution in .he . a

* (B~h)k x-veiocity component induced at the center of the hth core
vortex by unit strength vorticity distribution on the I'h panel at time tk .

:* 3Y :-velocity comoonent induced at the center of the ht core

vortex bv anit strength vorzict-: disznbuziuon in :he j panel at zime tk-

* Bx x-veiocity component induced at the center of the hth core
vortex by unit strength vorticity distribution on the shed vorticity panel at time
tk.

" (B"hyn 1)k :y-velocity component induced at the center of the hth core
vortex by unit strength vorticity distribution on the shed vorticity panel at time
tk.

b. New C's Influence Coefficients

The presence of discrete core vortices in the wake requires the definition of

new influence coefficients involving point singularity. They are the C's coefficients in

our familiar notations:

S(Cn im)k : normal velocity component induced at the iP panel control
point by unit strength mth core vortex at time tk .* (Ctirn< •,: tanaentiaI velocity component induced at the i panel control

-, C" , --vctoctz'v component .nuuccdi it :.ie shed~ ,'ort:cit\v -..anc,,, nuu

point by unit strength m'h core vortex at time tk.

(CY n + 1.m)k :y-velocity component induced at the shed vorticity panel mid
point by unit strength m core vortex at time tk .

* (CXhm)k :x-velocity component induced at the center of the h h core
vortex by unit strength m th core vortex at time tk .
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0 (CYhm)k :y-velocity component induced at the center of the hh core
vortex by unit strength rnt core vortex at time tk'

2. Computation of Time-Dependent Influence Coefficients

(Bni,n+ Ok and (Bti,n+ 1)k are computed exactly the same way as Bn.. and Bt..
are computed using Equations 2.14 and 2.15 with subscript n - I replacing j. Similarly,
(Axn+l,jk and (AXj ,k are calculated using Equation 2.12 with 0 set to zero and
subsript i appropriately replaced. Also (AYn+ Qk and (AYhI)k are calculated using
Equation 2.13 with Oi set to zero and subsript i appropriately replaced. We do the
same for (BXn+lij)k and (BYn+ 1,j)k using Equations 2.14 and 2.15 respectively and so
on for all the rest of A's and B's coefficients. The C's coefficients will be computed
with different expressions from those of A's and B's because they are the velocities
induced by unit strength core vortex. It can be shown easily, from the geometry of
Figure 3.3, that their expressions take on the following forms,

(-nmk = o( -CS[ i - (e)k) i

(Cc (mikm (eqn 3.11)
mk21r (rim\k

(Ct.) = - i[ - (eqn 3.12)imk 2n (rim)k

where:

(rim)k - V((xm1 - Xm) 2 + (ym i -ym) ]

xm. -= Vz(x+x.)

ym i = V2(y+y + )

xm = x coordinate of mdh core vortex at time tk

S=l coordinate o m1 core vortex at -;me

0i = arctan( Yi + - Yi)
xi + I - xi

0 (n) k = arctan( ym i - Ym )k
xmi - Ym
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By the same token. (C' and (C' Q are computed by Equation '..1
while (CY +1\and Chmkare computed by Equation 3.12 if 0,. is set e.qual to zeron+ ,mk Chk
and the subscript i appropiately replaced.

D. NUMERICAL SOLUTION SCHEME

1. The Floiw Tangency Conditions

The flow tangency conditions of Equation 3.5 can be written using the

influence coefficients as follows,

n n
E ( An" (qj~k I + Yk Bn ii [(Va). - ! ]

j=1 j=l

(Bn,~ 1)1k + r' (Cnim) (rm rm)1=o1, ..... 1 (e qn 3. 13)

where (Vstrea,)i is evaluated by Equation 3.7 at the ith panel control point

This equation, zhough it seems comnpiex. says -nothing -nore .han sumxrun ,o

zero all the velocity contributions due to individual singularity. Substituting Y.)k from

Equation 3.2, collecting like terms and rearranging the equation into,

n n

)k - I ('srA)ji n +i J f/k T - (".

k-I

E [ (Cn im)k (rm-1-rm) 11 , i= 1,2...n (eqn 3.14)

2. The Iterative Solution Procedure

'Equation : , s 2.rranged :n :his Form 'because %ve :ntend to olve

;aj ...... n) in zzerms 31'k Exo anding Equation 3.1-4 tcr ~ iresu!-s :n:n
following matrix equation,

[AI q )k - k B )k + (C k (eqn 3.15)
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Figure 3.3 Influence Coefficients due to Point Singularities.
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where [ A I is an n x n matrix whose elements are known constants. [ B )k and { C }k

are n x I column vectors whose elements are known only if the shed vorticity panel at

tk is established. that is. if Ak and Ok are known, then we can calculate all the

influence coefficients on the right-hand-side of Equation 3.14. We therefore make use

of this idea to ormulate our .terative solution procedure as follows

(1) Project the wake core vortices downstream according to the time step and the
local resultant velocities at their respective centers with respect to an inertial
coordinate system.

(2) Compute the coordinates of these core vortices relative to the airfoil-fixed
coordinate system due to its time-dependent motion.

(3) Start iteration cycle for current time step by initially assuming some guess
values of Ak and O k. We can use, except for the first time-step, values
obtained at previous time step. Compute then the influence coefficients needed
•n Equation 3.14 or 3.15.

(4) Obtain (Q. in *erms of 7x bv solving EQuation 3.15 as a linear system with
two right-hand-sides by the same Gaussian elimination algorithm used in
steady flow.

5) Calculate the tangential veiocities at the trailing edge panels, all in terms of
Ik'

(6) Invoke the Kutta condition of Equation 3.6 (with some efforts in algebriac
manipulation) to solve for 7k since it is the only unknown in that equation.

(7) Once Yk is solved, (q ) are then known. We can then calculate the velocity
components (LW)k and (Vw)k at the mid point of the shed vorticity panel.

(8) Equation 3.3 and 3.4 hence enable us to update the values of Ak and O k'

(9) Repeat the iteration cycle from steps (3) to (9) until converged values of Ak
and 0 k are obtained. Alternatively convergence can be set for (Uw)k and
(Vw)k instead.

(10) Compute the tangential velocities and disturbance potential at all panel
control points in order to determine the pressure distribution which can be
integrated to give forces and moments.

(11) Compute the resultant velocities which occur at the centers of all the core
vortices that will be convected down-stream. These velocities must be the
absolute velocities with respect to an inertial coordinate system.

3. Computation of Velocities

The iterative procedure mentioned in the previous subsection requires

calculation of tangential velocities at the trailing edge panels and the absolute velocity

'C, components (Uw)k and (Vw)k. They are computed differently due to the use of a
different frame of reference.
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a. Tangential Velocities on Airfoil Panels

The tangential velocities (V1)ilk "i 1,2 ...n) at all the panel control points

are calculated using the airfoil-fixed coordinate frame of reference as Follows

n n
[(Vt).ik I [Ati (qj) I + 7 Bt.

j I i-=I

+ t('Vstream)i tI k~ + (w)k (Btin+Ik

k-i

+X[(Cjm)k -1m I, i12.n (eqn 3.16)

b. Core Vortices Convection Velocities

The resultant velocities at all core vortices are calculated using, the Inert~al

frame of reference fixed with respect to V'X but resolving them into components in the

directions coincide with the airfoil-fixed coordinate system as shown bnelow

n n
(Uh)k = (Axhj)k (qj)k I + Yk ~ Bhj)k

+ (V~ 00~ )k+(y (Bxh,n+ Ok

k-I
+ (CXhm)k (rm-, - rm (eqn 3.17)

m~c h

ni n

(Vh)k = f(Ayh1 )k (q1)k I + Yk (Byhj)k

+ (V~ 00 )k + 'wk (Byhf + Ok

+ Z(c~hm)k (r,- rm)I (eqn 3.18)

m~e h
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Notice the use of V.o instead of V in Equations 3.17 and 3.18. Also
the subscript h is just an index usable for any core vortex. We can obtain (U.)k and

(VW)k if h is replaced by n+ I in these equations.

4. Disturbance Potential and Pressure Distribution

a. Why We Veed the Disturbance Potential

The concept of disturbance potential (p has been instrumental in the
formulation of both the steady and unsteady flow problems. However, it has never
gone beyond using it merely as a vehicle to understanding the superposition of simple
flows. The disturbance potential need not be solved for at all in the steady flow
problem formulation. This is because what one really is going after is the spatial
derivative of this disturbance potential, i.e. the disturbance induced velocity, from
which the pressure distribution can be obtained. We have, in all our solutions so far.

been successful in avoiding any disturbance potential Calculation since *he .-oncept of
influence coefficients allows us a direct evaluation of the velocity. Unfortunately, as
can be seen in Equation 3.10, when we proceed further to compute the pressure
distribution on the airfoil surface in unsteadv Iow. we are Faced with the problem of
evaluating the disturbance potential (p. or more precisely the rate of :hange of W. which
we approximate by using a backward finite difference expression. Therefore. the

pressure coefficients at the ith panel control point can be rewritten, in terms of non-
dimensional variables, as,

(CP) ik = [(Vstream)i]k 2 - I(Vt)i]k 2 - 2 ((Pi)k -( i)k't (eqn 3.19)
tk-tk.1

where (Vt)i is calculated by Equation 3.16 and (Vstream)i is the non-dimensional (by
Voo) form of Equation 3.7 evaluated at the ith panel control point.

We thus need to calculate at each time step, the disturbance potential at all
the panel control points. Short of having to solve the Laplace's equation by a finite

i:derence scheme. .ve evaluate -he iisturbance -)otenriai 0 )v integratln2 -he %.eiocitv
,ei.eda :n :-.vo stagzes i':om apstream at mfinitv :o :lie airzfoi eading e-ge. :nen -tlong :he

airfoil surface from the leading edge to each panel control point. Care must be taken
here to include only the velocity contribution due to disturbances.

One important question arises, in this approach, as to what value of
disturbance potential we should use at infinity before we carry out the line integral. We
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rmust therefore analyse the behaviour of p at infinity by examining the singularities that
constitute -he disturbance. They are -he source and vorticity distributions on the airfoil
surface and the core vortices in the wake. These singularities induce no velocity at
infinity from the knowledge of simple flows. In other words, the disturbance potential
(p at infinity is independent of spatial coordinates. The next juestion we should ask is
whether (p at infinity is timq-dependent? Let us adopt the view-point that if we are at

infinity looking at our airfoil and its associated wake, we simply see a point vortex with
a total circulation F0 at time to. We have already identified that F0 remains constant
by Helnholtzs theorem. It only gets redistributed, as time progresses, over the airfoil
surface and in the wake. Notice that the previous statement regarding what one would
see at infinity said nothing about the source distributions. The source distributions

though vary (or get redistributed ) as the time progresses. the total source strength
necessarily remains zero at all time in order to enforce a closed contour representing
the airfoil thickness. This is also the reason why the unsteady flow solution needs an
additional model to handle the vorticity conservation since the source conservation is
already implicitly so for a closed contour to exist. From these discussions, we are
certain that the disturbance potential (D at intinity is an absolute constant (independent
of time and spatial coordinates) whose value is fixed only by the initial condition we
decide to start solving the unsteady problem. The actual value of (p at infinity is in fact

immaterial so long as we know it is constant because its value disappears conveniently
as we subtract (@Pi)k.1 from (pi) k in Equation 3.19.

b. Computation of Disturbance Potential

We begin by choosing an arbitrary straight line extending upstream to
infinity from the leading edge of the airfoil along a direction parallel to V.o. For

practical purposes, we set infinity at say ten chord lengths away from the leading edge
since the velocities induced, at field points thereafter, by the disturbances are small
enough to be negligible. This line is divided into z panels with element lengths near the

leading edge comparable to the panel sizes used on the airfoil. However, the panel size
;s progressively increased :o take advantage of -he inversely decaying induced velocities
at _aret aistances. We compute the tangentiai components o" :he induced '.eioctes _t

the mid points of these panels using influence coefficients analogous to those used on
the airfoil panels. Using subscript f to denote these panel mid-points, we can define

influence coefficients (At')k, (A tfn + l)k (Btf)k, (Btfn + )k, and (C'fn)k and compute

them using the same expressions for calculating the A's, B's and C's coefficients used
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before -with cosO. replaced by (-cosax). sin6. replaced by (-sina) and subscript
replaced bv F. With the help of these influence coefficients, the tangential velocity
induced by disturbances at the panel mid point is:

n n

RV t (P)k V (At-jv (q )k I /- Ci

k-i
(Yk(Bt ~ 7. fk ~ (Ctmk (r ~.-rrn (eqn 3.20)

M I-

valid for f =1,2...z. The disturbance potential at the airfoil1 leading edge is the sum of
the products of the disturbance induced velocity at each panel and the panel length.

z

(DPe~ ((Vt) [(x -f) KfI- )I (eqn 3.21)
f= 1

Simiar;y, for the line integral over the airt'oi surface, we compute the
tangential component of the disturbance induced v-eiocity at the 1th panel control point
using the following equation

n [1

(VI9ik = [ 1 (q)k I + Yfkh Bt..
jl j =I

k-i

+ (YwA (BtI,n~ +Ik + ~ (c~i)k (rmi - m) I(eqn 3.22)

which is valid for i= 1,2...n. Performing the line integration by summation, the
disturbance potential at the ith nodal point on the airfoil is

node ik = Iek r(P .k 'torn>

' le'1

= (91Ae~ E X (Vt )j Ik rj11 +I~ for 'ie > i 1(eqn 3.23)

where r11j + Idenotes the panel length.

44

I N.



r -,j + I t (x + 1 -x + (yj + I - Y)2

Finally, the disturbance potential at the ith panel control point is,

(9)k = 2 [ (Pnode iN + (9Pnode i+ k i = 1,2 ..... ,n (eqn 3.24)

5. Computation of Forces and Moments

The Ct, Cd and Cm about the leading edge are calculated in exactly the same
way as it is done for the steady flow problem by integrating the pressure distribution

(See section D-4 of Chapter II).

E. FLOW MODELING OF SHARP EDGE GUST FIELD

The unsteady flow solution described so far can be extended to the study of
airfoils penetrating a sharp edge gust by modifying the boundary conditions with the

assumption that the gust front remains straight while passing "hroughhe airtbil. The
same assumption has been used in both [Ref. 3] and [Ref. 41]. An additional model :n

[Ref. 3] using distribution of singularities along the gust front had successfully

attempted to simulate the distortion of the gust front passing over the airfoil surface.
It was shown that the pressure distributions, during the time when the gust front

remained on the airfoil surface, were affected only at the neighbourhood of the gust
front. The overall pressure upstream and downstream of the gust front stayed

essentially the same. The distorted gust front model is not used in program U2DIIF.

The use of the relatively simple yet sufficiently accurate model of a straight gust front
affords the modifications to the unsteady flow solution to be confined only to the flow

tangency conditions. That is to say, the expression of Vstream in Equation 3.7 would
include the gust velocity for panels that are already in the gust field during the

penetration phase. Similarly, the computation of core vortex velocities using

Ecuations 3.- and 3.13 have the gust veiocitV IddCd -o e V-z f eh core Vcroices Ire

aiready n the gust iieid.

In an attempt to generalise the solution for cases where airfoils enter the gust
field at an angle of attack, the convenient model used in [Ref. 3] by setting the

computation to proceed, for the undistorted gust front simulation, so that the gust

front always coincides with the nodal points is difficult to implement. At any one time,
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if an airfoil enters a gust field at an angle of attack, the gust front would appear in

between two nodes of a particular panel on one surface while the gust r ont proceeds

from node to node on the other surface. We therefore furrher modify the ilow

tangency condition only on that particular panel where the gust front ties in between

two nodes by taking the gust velocity on that panel to be proportionai to :he :'rac-ion

of panel length partially submerged in the gust field.

4
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IV. DESCRIPTION OF COMPUTER CODE L2DIIF

A. PROGRAiM L2D[IF STRUCTURES AND CAPABILITIES

p 1. Restrictions and Limitations

The numerical formulations of both the steady and unsteady flow problems

outlined in the previous Chanters are codIed in a FORTRAXN z oxnuter program called

U2DIIF (See Ar~tendLx A for the proizram listinys). The nresent solution methods

treat the inviscid and incompressible :7ow as an approximation -o the real qow so long

as the viscous effect is negligible and the flow stavs attached on the airfoil surface at all
Lime. These restr.c-;crs .ire nio strance-rs 'o iny )ne wnio :5 :arniiiar wxith any other

p4 otential rlowx sciattan m nouh's. Ot Kta-"'n 'e i.c*. ret- in f -.otential flow

solution. the method is enr.irely zeneral in that the snape -If air:boil is arbitrary and any

arbitrarv. continuous motion of' -he airfoil coulc be smulatcd usine either the closed

orm .~ru: a~n r -lce-2 xta -o:n:, -o :cc:'.1 )~ :etso' t :

cranslat:cnai and rctationa. e, ct~s

The storage o~ the computer that carries out the :alc, atIons may be the other

limitation one should consider. The storage rceouirements grow rapidly with the number
of panels (n) and the number of computation -ime steps m~n. By far the prime

contributor to this storage requirement comes from the massive amount of influence

coefficients. The number of influence coefficients increases with the square of the

number of panels (n2). Each time step increment adds (2n + in2 ) more influence

coefficients due to the formation of shed vorticity. The current program fixes the

maximum number of airfoil panels to 200 and the maximum allowable time steps is

also 200,

An additional constraint worth mentioning concerns the gYust field simulation

whereby the current solution methodology is valid except in the use of the same
'rc1SSurl :ouatio~tir:l In'. re ntcd 3ernOuG1'.. ",: U l .e1-,at:Cn

:'it .udmrt~a mp:,ori ariucri:-,-in -ne ucrvai2 -,,is xja io s the

irrotationality of the flow field. There is no doubt that the flow Fields upstream and
downstream of the gust front are irrotational. However, when one needs to obtain the

pressure on the airfoil surface, an implicit integration is done across the gust front. A
flow field inclusive of the gust front is rotational since the line intesaral of velocity in a
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c:osed path does not vanish when the gust Cront is crossed. Failing the proper

denvatcin of a new pressure equation appiicabie to unsteady rotational flows, care

must be exercised :, o -e-gard the present method as an approximate solution to gust

tields of weak strengths only.

. Current Structures of U2DIIF MAIN Program

The overadl program :ogic-.low ,aar: ts as shown in Figure 4.1. The program

first reads in the input data from filecode I and sets up the airfoil panel nodes and

slopes. Immediately after that. the steady flow calculations are executed for the initial

angle ot attack a according to the soiution scheme described in Section D of

Chapter 1. The steady flow solution is inciuded primarily to

" Provide the necessary initial parameters for the unsteady flow solution to
proceed in time. In other words, the steady flow solution handles the V.0 and
initial angle of attack a. one decides to beg=n the unsteady flow calculation.

" Allow -he .ode to :1hnction irectyi ,s a stead- flow solver as and when
necessarv without having to do the time consuming unsteady flow iterative
solution and approach the steady ilow as ime approaches infinity.

The program terminates once the steady fqow calculations are done if the

program deterines. based on the input data set by user, no requirement for unsteady

-low solutions. Othe.vise the unsteady flow calculaticns will be activated bv selecting

*and computing the rigid body motions of the airfoil and the corresponding

computation time-step size. Currently, all the time dependent motions are equation-

,.- generated, they are the positions and rates of the translational and rotational motions.

" Incorporated as case-runs within the program U2DIIF are the following motions

(1) Step change in angle of attack from any initial value.

(2) Modified-ramp change in angle of attack about any pivot point from any
initial value.

(3) Harmonic translational motion at any angle of attack.

(4) Harmonic rotational motion about any pivot point at any mean angle of
attack.

(5) Sharp edge gust penetration at any angle of attack.

2Ou :fmvlec:Oa to -cnera:te :e i norton :=sing discrcte xata "c,-ints

.t.iujn oi :irne, :he program could be easiiy modiried.

The computation time-step sizes for the harmonic translational and rotational

- motions are constant values determined by the frequencies (FREQ) and the number of

computation per cycle (DTS). For the case of step change in angle of attack, the

* computation time-step size is progressively increasing, from a starting value (DTS), as
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Read Input :rom/

Filecode I.

Compute Panel Coordznates

and Slopes

Steady Flow Solution

Set Flow Tangency & Kutta Cond.:ions as
a System of n+l unkowns q (j=1,2 ...... n)

and y in n+1 linear Equations

Solve q (j=1,2 ...... n.I and'
-"Simultaneously by Gaussian Elimination

Comi ute Veloc.': -, .s:urzance

Potential p. and Pressure ',. ,
Distributions (i=l,2 .......

Comp ute Aerodynamic Coefficients of
Forces and Moments - Cd

Initialising Parameters Before
Starting Unsteady Flow Solution

Need Unsteady no So

Flow Solution ?Stop

i' ,%" ,yes-

Time Step Increment

Figure 4.1 Flow Chart for L2DIIF Computer Code.
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time increases. Thle case of the modified ramp change in angle of attack adopts

Intially a constant computation time-step size (DTS) durng the transient rising of the

angie of" attack. Once the final angle of attack is reached, the computation time-step

size is progressively increased also. Similarly for the case of airfoil penetrating a gust

*ieid. :he ,omoutation - me-step size (DTS' is constant during the period when the gust

front remains on the airtbil surface but progressively increases once the entire airfoil is

submerged in the gust field. These variations in computation time steps are to provide

greater flexibility both in capturing transients and covering relatively large total time of

computation without having to contend with the storage space requirements described

previously. These variations in time-step sizes described so tar are associated with

setting the input parameter TADJ to zero. If TADJ is chosen to be non-zero, all the

case-runs would compute initially using the starting time-step sizes, based on DTS for

.,on-csciiiator-: motions and FREQ & DTS 'or harmonic motions. and the program

would prompt for an user choice of time step adjustment. If the answer is yes, the

program would back-track the previous solution and recompute the current solution

.sing an aldiusted time-sten size that is TAD times the :nitiai *alue 'DTS. This sTecial

step variation eature ,ives he program added capabiiity of allowing an

interactive time step selection during the progress of unsteady flow computation. The

ability to back-track and recompute the current solution using a different time-step size

enhances the possibility of using program U2DIIF together with a viscous flow solver

forming an Inviscid-Viscous-Interactive solution scheme which often requires such time

step variations.

The MAIN program performs the iterative solution procedures set out in

Section D of Chapter III. The convergence check during the iterative solution is done

through the user specified tolerance between successive iterative solutions of both

(Uw)k and (Vw)k. The solution continues into the next time-step by selecting the time

step size according to the particular case-run and projecting all the wake core vortices

downstream so that their new positions relative to the airfoil at the new time step can
~-e .:crrec::v ,icterrianed.

B. DESCRIPTION OF SUBROUTINES

1. Subroutine BODY

This subroutine is called by subroutine SETUP if the user selects an airfoil

that is either a NACA XXXX or 230XX type. It in turn calls subroutine NACA45 to

obtain the airfoil thickness and camber distributions and returns with the computed

(x,y) coordinates of the panel nodal points.
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2. Subroutine COEF

This subroutine is called by the MAIN program in the unsteady flow

calculations. It utilises, at each iteration ,ycle. the influence coefficients generated by

subroutine INFL to calculate the coefflcients of the matrix Equation 3.15 by expanding

Equation 3.14. These matrix coefficients are necessarily set up in this way so that the

source strengths could be solved in terms of the vorticity strength by subroutine

GAUSS as a linear system with two right-hand-sides.

3. Subroutine COFISH

This subroutine is called by the MAIN program to set up the coefficients of

the matrix system of Equation 2.18 for steady flow where the source strengths and

vorticity strength are solved simultaneously by subroutine GAUSS as a linear system

with one right-hand-side. The matrix coeffcients are calculated using Equations 2.16

and 2. iV.

-1. Subroutine CORVOR

This subroutine is called by the MAIN program at nearing the end of the

unsteady niow calcuiations betbre startn a new tLme step. it computes -he resultant

convective vloc-,es or all the wake core vort;ces with respect to an inertial frame of

reference according to Equations 3.17 and 3.18 where all the appropriate influence

coefficients are linked through common block from subroutine INFL.

5. Subroutine FANDM
This subroutine is used in both the steady and unsteady flow calculations. It

is called by the MAIN program immediately after the pressure distribution over the

airfoil panels are known so that it can perform the simple integration of pressure in the

appropriate directions to give the aerodynamic forcc and moment coefficients of lift,

drag and pitching moment about the leading edge according to Equations 2.22 through

2.26.

6. Subroutine GAUSS
This subroutine is the standard linear system solver that employs the well

* rown '-jausstan-iimunation .vith :1artuai eivotmc :nd oerates .imuitaneousiv -,n i

user .re'"z;eu ' number of rigvht-hana-s-des. it is called bv the "vAIN program in both

the steady and unsteady flow calculations. In order to use GAUSS, the coefficients of

the augmented matrix must be set up so that GAUSS will return the solutions

- replacing the corresponding columns of the augmented matrix that were initially

occupied by the right-hand-sides. The coefficient set-ups are done by subroutines

COFISH and COEFF respectively for the steady and unsteady flow problems.
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7. Subroutine INDATA

This subroutine is called by the MAIN program to read in the first three sets

of data cards and returns to the MAIN program if IFLAG = 0. Otherwise !t continues

to read in the fourth data card as the NACA number corresponding to the type of

airfoil and calculates the thickness oarameters that wiil be used by subroutjne

NACA45.

8. Subroutine INFL

This subroutine is the generator for all the influence coefficients that need to

be stored and used by many subroutines associated with the unsteady flow calculations.

It utilises the known relative geometrical parameters of the singularities to carry out

computations based on Equations 2.12 through 2.15, 3.11 and 3.12. The MAIN

program calls this subroutine in every iteration cycle of each time step so that the time-

dependent coefficients can be updated as and when necessary. T'me-independent

coefficients are computed only once in the entire unsteady flow solutions. Those

influence coefficients involving the wake core vortices are updated in each time step

while those involving the shed vorticity panel :ire ,;alcuiated as ,reauentiv -is -1"e

number of iterations take to terminate a converged solution. It., howe'ver does not

compute and store those influence coefficients needed for the determination of

disturbance potential (Equation 3.20) simply because they are used only once in each

time step.

9. Subroutine KUTTA

This subroutine is called, in the unsteady flow calculations, by the MAIN

program during every iteration cycle in each time step to invoke the Kutta condition

for unsteady flow expressed in Equation 3.6. It calculates the tangential velocities at

the trailing edge panels using Equation 3.16 in terms of the unknown vorticity strength

that is manipulated and solved algebraicly.

10. Subroutine NACA45

*This subroutine is called by subroutine BODY if the airfoil selected be!ongs to
:he a mlies )f" \AC.\ 4-or:ts ri r e "ACA X-Ui"nts ."rrous -" -ren X
who share common thickness jistributions with tie 4-digits ar'ii."o's avinz :he santc

thickness to chord ratio. The thickness and camber distribution data of these airfoils

are calculated and returned to BODY.
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11. Subroutine PRESS

This subroutine is called by the MAIN program to calculate the pressure
distribution over the airfoil panels after the iterative solution for the unsteady tiow
problem has successfully met the convergence criterion. It first computes the
tangential velocities at all panel control points using Equation 3.16, then performs the
disturbance potential evaluation at the current time step according to Equations 3.20
through 3.24. Together with the disturbance potential data obtained from the previous
time step, it calculates the pressure distribution using Equation 3.19.

12. Subroutine SETUP
This subroutine sets up the panel nodal coordinates for MAIN program by

reading the 4th and 5th data sets of the input file if IFLAG = I is set. It skips the data
reading if IFLAG = 0 and procet~d, to set up the node distribution and call subroutine
BODY to calculate the airfoil coordinates. The node distribution adopts a cosine

*formula in order to have closely packed panels towards the leading and trailing edges

for improvements in solution accuracy. Regardless of how the nodal coordinates are
obtained. SETUP determines the panel siopes and airfoil perimeter iength.

13. Subroutine TEWAK
This subroutine is called by the MAIN program at every iteration cycie of

each time step of the unsteady flow calculations to compute the resultant velocity
components at the mid point of the shed vorticity panel using Equation 3.17 and 3.18

These v-elocity components are necessary to ensure the correct establishment of the
shed vorticity panel length and orientation which governs the successful

implementation of the iterative solution scheme for the unsteady flow problems.
14. Subroutine VELDIS

This subroutine returns to the MAIN program the velocities and pressure
distributions for steady flow calculation using Equations 2.20 and 2.21. It also
performs the evaluation of the disturbance potential at the panel control points.
Though these disturbance potential data are not necessary for steady flow solution.
:hev will 'ie needed in the :irst :ime ct c t :ne unstcav tow orcssure calcuiation.

C. INPUT DATA FOR PROGRAM U2DI1F
Program U2DIIF reads its input data from filecode 1. An example of the input

data file is as shown in Appendix B for the case where the airfoil nodal coordinates are
input by user. User could however let the program generate the nodal coordinates if
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the airfoil chosen happens to belong zo the family of NA CA 4-digits or )-digits of type
23OXX. to do this. simply change I FLAG -o zero 'n the first :tern of* the 3" set of

4 data card and repiace :he nodal coordinates data in the -;" and J' iets of' data cards
by a single data card containing only the particular airfoil's NACA number using
Format 1-;). Figure 4.2 contains an :tLernsed dJescr~otcn )f -.he iecuentiai :nput
Variabies.

D. OUTPUT DATA FROM PROGRAM U2DIIF

Appendix C contains a sample output data generated )y using -he input data set
shown in Appendix B. Due to the repetitive nature of output as the computation time
progresses, only data at selective time steps are shown. The output data 'tile begins with
writing out what the program has read from the input data File followed by the

cnouted nodal coordinates onlyif thev: are program generated. otherwise -roceeds to
.vrite rhe computed air:'oii per-imeter 'enzrh. Th e next set: of output data are -he steady%
flow Solution :arameters of distributed source strengths. vortic-ty strength. pressure
and velocity distributions as well as :he force and -oment coefflicients. The output data
terrinates at -tis point unless -.nszead-y tlow solution .s recutred. it n-he n r,.-*or
cackI time step. -.he unsteady tlow solution parameters similar to the previ'o us output
for steady low xith additional information pertaining to the rigid body motions and
trailing wake vortices data. An explanation of the output variable nam~es are listed in
Figure 4.3. All output parameters are non-dimensional quantities.
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Data Set --- Format I )-data card
ITI T LEZ Number of :itie clards to be used.in Data Set .

Data Set ---C Format (20A.4) - ITITLE data cards
T IT7LE -Headin~zs :o oe printed on output fror case run identification.

Data Set ~3Forwat (315, - I data card
IFLAG -0 if airfoil is NACA XXXX or 230XX.

-I otherwise.
NLOWER - Number of panels used on airfoil lower surface.
NUPPER - Number of panels used on airfoil upper surface (need not

be the same as N LOWER).
Data Set =_4 Format (6F10.6) Sf IFLAG= I - variable data cards

X(l) - x-nodal coordinates (divided by the chord length, c). A total
of n+ I nodal points divided into 6 points per data card.

Data Set = 5 Format I6F10.6) - variable data cards.
V1) -v-niodai coordinates %divided by ~zcorresponding to the

Data Set =4 if' IF LA-G =

Data Set =6 Format ' F 10.6) - I data card
ALPI - initial angle of attack (AOA) in deg.
DAL? - increme-it in AOA in dec .-'r :ton-ascillatorv motions.

- Mvaximum am-oitude of '!LA changze in dei for rttoa
aarmomc -notions.

TCON - Non-dimensional rise time f(V t:c) ofC AQA for motion
involving modified-ramp ch'ange' in AQA.

FREQ - Non-dizmensionai oscillation frequency (ocrV) for
harmonic motions.

PIVOT - The length from the oivot point to the leading edge divided
by c (po3stive aft) for rotational motions.

UGUST - -Magnitude of gust velocity (divided by V00) along Voc.
VGUST - Magnitude of gust velocity (divided by V00) perpendicular to o

Data Set #,"7 Format (3F10.3) - I data card
DELHX - Amplitude of chordwise translational oscillation divided by c.

(positive forward).
DELHY - Amplitude of transverse translational oscillation divided by c.

(positive downward).
PHASE - Phase angle in deg between the chordwise and transverse

translational oscillation with the latter as reference.
Data Set 8S Format (4F 10.3) - 1 data card

-Tnai non-imnensional :ime -o zerrninate 'insteadv !1ow scluticn.
DTS -~r nr, c :m-step size :,: ou-. s~lt motiors :fTA Di

.\unbe of-omutation stens ne- z-;cie -. r harmnonic motions.
- Baseline time-stdp size for all nmiotiohis if TADJ~cO.0.

TOL - Tolerance criterion for checking the convergence between
*successive iterations of (U w)k and (VW,)k

TADJ -Factor by which DTS will be adjusted.

Figure 4.2 List of Input Variables.
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TK - Time step tk'
TKM I - Time step tk.1 .
ALPHA(T) - Angle of attack at time tk .
OMEGA(T) - Rotational velocity (positive counter clockwise) at time tk .
U(T) - Chordwise translation velocity (postive forward) at time tk.
V(T) - Transverse translational velocity (positive downward) at trie tk.
NITR - Iteration number.
VXW - Iterative solution of (U,,)k
VYW - Iterative solution of (VWv)k.
Wake - Iterative solution of shed vorticity panel length Ak.
THETA - Iterative solution of shed vorticity panel orientation 0: ...
GAMMA - Iterative solution of the strength of vorticity distribution.
J - Panel number.
X(J) - x-coordinate of the mid point of jh panel.
Q(J) - Strength of source distribution on the jth panel.
CP(J) - Pressure coefficient at the mid point of ith panel.
V(J) - Total tangential velocitv at the mid point ofjth panel

referencecrto the airfoil:fixed coordinate system.
' CD - Drag coefficient.

CL - Lift coefficient.
CM - Pitching moment coefficient about the leading edge.
M - Trailing wake core vortex number.
X(M) - x-coordinate of the center of mth core vortex.
Y(M) - y-coordinate of the center of mth core vortex.
CIRC - Circulation strength of the mth core vortex.

Figure 4.3 List of Output Variables.
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V. RESULTS AND DISCUSSIONS ON CASE-RUNS

This Chapter presents the results of numerous case-runs oC U2D[IF code for -he

purpose of verifying the code. The various airfoils used in the case-runs are deliberately

chosen to be the same as those airfoils where direct comparison of results can be made

with either theoretical analyses and/or experimental data available in the literature.

A. STEP CHANGE IN ANGLE-OF-ATrACK

1. Case-Run Definitions

Consider an airfoil initially at zero angle of attack to the free stream VO that
undergoes a step change in angle of attack at t. The resulting tiow should then

provide the time-dependent information on the build-up of aerodynamic forces and

moments on the airfoil resembling the classical results of Wagner [Ref. 5] caicuiated

based on linearised theory. Although Wagner orescribed a slightly different initial
condition in that the airfoil is initially at rest and impuisiveiv started at an angle of

attack and velocity V0, the difference is insignificant, especially for a symmetrical

airfoil. This is because the seemingly different initial conditions when translated into

the mathematical model means that the step change in AOA uses non zero initial

circulation I 0 at to with non zero initial disturbance potential at inffmity if the airfoil is

cambered. For a symmetric airfoil, these initial values are all zeroes and therefore

mathematically would be the same as the initial conditions prescribed by Wagner.

2. Results and Discussions

a. Von Mises 8.4% Thick Symmetrical Airfoil

A 8.4% thick symmetrical Von Mises airfoil is used for this case-run where
the airfoil performs a 0.1 rad (or 5.73O) step change in AOA. Figure 5.1 illustrates the

changes in the pressure distributions over the airfoil at time instances corresponding to

the airfoil having traveled distances, in terms of hord length. of 0.2. 0.5. ".0. 1) and
G. The associated traiiing wake patterns at these time instances ,less t = 230 :.re shown

in Figure 5.2. The time-dependent build-up of aerodynamic coefficients of lift, drag,
pitching moment and the circulation strength over a computation period of two

traveled chord length are shown in Figure 5.3. Notice that the lift, pitching moment

and circulation results are normalised by the respective steady state values at the same
AOA. The apparently large initial loading on the airfoil shown in Figure 5.3 correlates
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consistently with the results or' the Piston ZFheorv or' !Ref. 61 which predicts the starting

load on an arbitrary wing to be

CL . =4ct:M
startinM

where N is the .Mach number. In the case of an incompressible ,low t M = 0), the initial

loading would be infinitely large. The same large initial loading was obtained by Kim

and Mook (Ref. 7] who used continuous vorticities as panel singularities instead of our

source and vorticity approach. Perhaps what remains most surprising is that the work

of Basu and Hancock -Ref. 3] did not predict this initial loading, aithough they used

the same singularity distributions as U2DIIF code. The initial large loading in lift and

pitching moment decreases rapidly over a short time span, whereby the airfoil traveled

apnroxinmateiv One-tenth chord !ength. before ising ;n a manner parailel to the Wagner

Function. Thle drag, however, continues to decrease monotonically after the initial

sharp t'ail. The circulation rises, as continuous shedding of vorticity takes place, slowly
:rorn -he initial condition of zero to the asymptotic steady state value as t:me

approaches :0. These results. disregarding the initial large loading associated with

incompressible flow, are in close agreement with the results of [Refs. 3,4,7].

b. Thickness Effects on the Wagner Function

In order to more closely correlate the results of U2DIIF code to the

theoretical prediction of Wagner, we performed the step AOA change calculations for a

very thin (1% thickness) NACA 4-digit symmetrical airfoil which in reality should
represent a flat plate. The results are plotted as shown in Figure 5.4. Shown also on the

same Figure are the results of the 8.40%/0 thick Von Mises airfoil and a 25.5% thick

symmetric Joukowski airfoil. The initial loading falls off less rapidly for the case of the

simulated flat plate as compared to other thick airfoils but the subsequent rise in lift

follows very closely the Wagner Function.
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Figure 5.2 Trailing Wake Patterns at Various Time Instances
Resulting from a 0. 1 rad Step Change in AOA for a

8.4'/% Thick Synumetric Von Mises Airfoil.
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Figure 5.4 Time-Depcndent Lift Resulting from
Step Change in AQA for Airfoils

of Various Thicknesses.
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B. MODIFIED RAMP CHANGE IN ANGLE-OF-ATTACK

1. Case-Run Definitions

The case of a step ciazange in AOA can be considered as an useful check for

U2DIIF code since a handful of results from other theoretical analyses are available.
Howvev e. a szen :hanze :n AOA is practicai!v not ealisable since all motions. short of

oaavlnz 1,*:inite veiocties, rake piace over a Inite :ime span. The step change in AOA

that is practically possible is in fact some form of ramp rise over a short time span with
large velocity. Even so, due to the inertia of the airfoil, an exact ramp rise in AOA

does not physically describe the actual motion of the airfoil since finite time is also
involved before the airfoil could build up its ramp velocity. Same argument holds at the
end of the ramp rise before the airfoil could stop at the final value of AOA. Therefore

a so called modified ramp,. with some form of rounding at the two ends of a ramp. is

.'cre '.Ceiv to describe anything close to what is phvsicallv achievable. The theoretical

work of Homentcovschi in [Ref. S1 considers the case of a flat plate that moves with

constant velocity and changes the incidence about the mid chord, through a particular

-am --sn.on. descbed mathematicallv as.

r0 fort < 0,

a(t) 6ci (3 - 2t,';) t2'r 2  for 0 t T
6 fo r t >

where 6ct is the magnitude of the AOA change and c is the rise time for the AOA to

reach its final value. This particular function, plotted as shown in Figure 5.5, does in

fact describe such a modified ramp.

2. Results and Discussions

a. Flat-Plate Case-Run

Since the results of [Ref. 8] serves as another excellent source for the
verification of U2DIIF code, the obvious thing to do is to use U2DIIF to compute for

ne -ase , a flat .iatc. azain simulated '-,- ie '", :hick. \ACA-)-00 airfoil. 'xecutin

.... ,2UU -.. amO 2e ,', -ad .AA ,evr , -:se ::me ai . .uord enith. Ti:Se

time is chosen simply to facilitate a direct comparison of results to [Ref. 8] which used

"" 70



a rise time of 3 half-chord lengths. The results of computation are shown in Figure 5.6

and 5.7. Figure 5.6(a) takes a close look at the build up of lift during the initial period
when the airfoil moves a distance of six .hcrd lengths. The lift initially rises to about

82% and then decreases to about 66% of the steady state value during the transient
rise time. Thereafter it increases monotonically in a manner parallel to the Wagner
Function. Figure 5.6(b) is a zoom view of the rather slow convergence of lift to the

steady state value. It takes the airfoil to cover a distance of around 50 chord length

before the lift builds up to almost 99% of the steady state value. The same results were

obtained in the theoretical analysis of [Ref. 8]. Figure 5.7 shows a collection of the
time-dependent aerodynamic parameters resulting from this particular case-run.

b. 1Tickness Effects

The same modified ramp function is used on the 8.4% thick Von Mises
airfoil. The resulting lift-history plotted in Figure 5.8 shows a lower peak value of lift

during the :ransient AOA rise as compared to the case of a tlate piate thougi; a sirnuar

trend of lift rise is obtained. Figures 5.9 and 5.10 show the results of pressure
distributions and trailing wake patterns at various time instances. One could directly
compare these Figures to the corresponding Figures arising from the step AOA change

calculations and see the remarkable differences in transient characteristics as a result of
varying the prescribed motions. Incidentally, one should realise that the non-

dimensional rise time of 1.5 chord length is a deceivingly large number. In fact, when

one converts this to the real time for an airfoil of 10 ft chord length moving at a low

Mach number of 0.2, the rise time is indeed only of the order of 0.06 sec. which for

practical purpose is close enough to a step. Neverthless, the transient part of the lift
response is entirely governed by how one prescribes the transient motion.
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C. TRANSLATIONAL HARMONIC OSCILLATION

1. Case-Run Definitions

Although the U2DIIF code is capable of computing ans:cadv '. u :ron

for any general translational harmonic motion described by a chordwise and a

transverse components bearing a given phase :eia:ionshio.

h y(t) = 6hy sin(0)t)

hX(t ) = Sh., sin(ot + X)

where .) is the oscillation frequency, X is the phase angle between the two osciiaution

components and Sh x & h Y are the magnitudes of chordwise and transverse oscillations

respectively. The case-run to be presented in this section selects the motion to consist

of only the transverse component, i.e. the heaving or plunging nction. - lA!5-'

airfoil is chosen for the case-run. The airfoil is initially at zero AOA with the

fireestream V.0 and performs the plunging oscillation at an amplitude of 6h, and a

reduced frequency of oc''

2. Results and Discussions

Figures 5.11 and 5.12 present the results of an airfoil executing a piunging

motion at an amplitude of 0.018c but with two different reduced frequencies of 4.3 and

17.0 respectively. These numbers are chosen to coincide with those numbers used in

[Ref. 4]. Excellent correlations are obtained. Notice from these Figures that the

oscillation frequency has a great influence on the magnitudes of the aerodynamic

parameters due to the formation of significantly different trailing wake patterns for the

same oscillation amplitude. Also to note is that the width of the resulting trailing wake

is much larger than the amplitude of the oscillation, reinforcing the fact that the

unsteady flow is strongly governed by the shed vorticity in the trailing wake. The lift

and pitching moment oscillate at the same frequency as the airfoil motion but slightly

out of phase, the phase differences vary with the oscillation frequency. The drag is

-owe.er sciiiatinQ t about -- ice Ie 'reuenc': f "he ,irfoii :no:cn ,i

:nean vaiue. mnuicacing :nat :he p.unging :"tln .ndecd , frneratos 'C:cn rcr,_'rv

thrust. The same conclusion was arrived at in the experimental work of Hlalfman

[Ref. 9] using a symmetrical NACA-0012 airfoil.
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D. ROTATIONAL HARMONIC OSCILLATION

I. Case-Run Definitions

The case of an airfoil oscillating harmonically in pitch will be uniquely detned

only if a pivot point is prescribed. If a fixed pivot point is used in the calculations, take
br example the leading edge. any pitching motion about a pivot point other :han he

eading edge would need to be described as composed of a pitching and a rransiation

motions about the leading edge. Program U2DIIF handles such conversion
automatically without having the user to figure out the combined motion. This applies

also to the case of modified ramp rise in AOA. The harmonic pitching oscillation is

described by,

a(t) = Sa sin(0t)

where da and o are the amplitude and frequency of oscillation respectively.

2. Results and Discussions

The results for the case of *he S.4% thick Von \lises svmmetrt.c airIou.

-scillating at an amplitude of 0.01 rad (or 0.573*) at a rather 11,h reduced freauenc-

or'Wc. V =20.0 about the leading edge, are shown in Figure 5.13. The lift, drag and

pitching moment time-history as well as the trailing wake patterns are very much

similar to the case of a plunging airfoil at frequency of the same order of magnitude.

The differences are clearly in the magnitudes and phase angles. These results check

closely to those of [Ref. 3]. Figure 5.14 shows the results of the same Mises airfoil

performing another harmonic oscillation at a lower reduced frequency of 0.8 and a

large amplitude of 0.3973 rad about a pivot point 0.5 chord length ahead of the leading

edge. [Ref. 4] conducted the same analysis for this pitch oscillation although the

reason for using such a high amplitude of almost 230 was not clear. It is envisaged

that such high amplitude may result in flow separation. Nevertheless, the case-run is

carried out assuming validity of attached flow for the sake of comparing the results.

*?rha-s ,-n ni-erent advantage. ;n the 'i-ht ,f ,2D[I1F -ode ".erfication.

;i .uil Imoituce kn -.nis case-run :s -iut , iscrepanc' . .i iy. 'vouid cw no
significantly. Due to the use of different computation time-step size the pressure

distributions on the airfoil, shown in Figure 5.14, do not correspond one-to-one at

exactly the same angular positions as those presented in [Ref. 4]. However, the angular

positions are matched to within 0.0010, 0.050 and 0.80 respectively for the three

pressure distributions shown. They correlate very well to the results of [Ref. 41.
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E. SHARP EDGE GUST FIELD PENETRATION

Case-Run Definitions

The c ase of an airfoii penetrating a sham edge gust field can be computed

using the U2DIIF code by specitfying the components of gust velocity along and

nemendicuiar :o "he Veestream V and :he angle of attack of the airfoil. The resuits

thqat are .resented here consider the case of airfoil penetrating a sharp edge vertical
gust at zero AOA, in view of generating information on the time-dependent lift

resemblirg the classical results of Kiissner [Ref. 101 based on linearised theory. The
gust front 7s taken to be at the leading edge at t0 with only the transverse (vertical)

"orn.t~onen ?  0.zSV:

2. Results and Discussions

Figures 5.15 and 5.16 demonstrate the variation of pressure distributions and

traiing va. :atte-ns respectvelv urin, and shortly after the gust front moves past

,he airfoil. It is interesting to see that the resulting wake pattern after the entire airfoil

:s submerged in the gust fieid is as if being split by the gust front into two portions

curl. ng ! on osite directions. Ret: 31 oredicted' a similar behaviour for the case r in

u,ndetornd zust front. Due to -he use of the modified flow tanaencv conditicn to

adle the situation when the gust front happens to fall in between two nodal points.

the pressure distributions, predicted by U2DIIF code, lie in between the results of the

undeformed and deformed gust front models used in [Ref. 3]. We therefore conclude

that this modified flow tangency condition produces sufficiently accurate results
without adding complication in deformed gust field modeling which in turns limits the

application to only sharp edge gusts. The present method would therefore preserve the

generality for extending calculations to other types of gust front. Another comparison

is made, as shown in Figure 5.17, by plotting the build-up of lift as a function of

distance traveled by the airfoil in chord lengths. Shown in the same Figure are the

Kiissner Function and the results obtained from another case-run using a 25.510 thick

Joukowski airfoil.
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VI. CONCLUDING REMARKS

A. GENERAL COMMENTS

The U2DIIF computer code has been developed for the purpose o1

demonstrating the successful extension of the well known panel methods, which have

been used extensively for steady flow problems, into a powerful numerical tool for

solving the unsteady flow problems. The mathematical modeling of the various types

of unsteady flows has been done with the goal of preserving the generality of :he

methods. The intention is to present a method that has the minimum inherent

limitations and restrictions so that its usage for future applications and developments

could remain appealing.

The validation of the U2DIIF code has been done through the various case-runs

of the numerous types of unsteady flow problems. The results of each case-run has

been shown to be well correlated to the results obtainable from :he aterature ,n "e

form of theoretical analyses, numerical calculations based on different vanants of nane;

singularities and in cases where limited experimental data are available. The ability of

those case-runs using an airfoil as thin as 1% thickness to produce results that

correlate accurately to the theoretical flat plate results is perhaps a remarkable

robustness possessed by the present unsteady flow solution methods.

B. ENHANCING U2DIIF PROGRAM'S CAPABILITY

It has been noted in Chapter IV that the current U2DIIF code limits the total

number of panels to 200 and the total computation time steps to 200 also. These limits

are not at all rigid and can be easily increased if the computer storage space is not

critical. A point to note is that the computation time will grow rapidly as these limits

are raised. The current linear system solver, the Gaussian elimination algorithm, used

in the code must be concurrently improved upon to efficiently reduce the computation

".me Cetire. .or ::e :tcratons .n .-ach :Ime A ,:;ose exanunatinr1 jf :e natrnx

Equation 3,15, where the linear system solver is needed in every iteration, reveals that

the coefficients of the left-hand-side matrix [A I are time-independent constants.

Therefore the Gaussian elimination algorithm need only be done once for the entire

unsteady flow calculations as far as the left-hand-side matrix is concerne-d. One could

then perform, for each iteration, the manipulation of the two right-hand-sides
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according to the steps taken for th. reduction of the left-hand-side. This should cut

down the computation time significantly against the current method of" manipulating

both the left- and right-hand-sides simultaneously in each iteration. The savings in

computation time was not pursued in the development of U2D!IF code because the

prime concern was to demonstrate that the basic iterative solution scheme works 1'or

the unsteady flow problems.

Another improvement that one may consider is to enable the code to be

continuable from a time step where previous calculations were terminated. One sees

this requirement necessary not only in the case of premature termination of

computation due to some unforeseen circumstances, but also if :ne needs to prolong

the computation time. Certainly with the current code structure, one has no choice but

to perform the calculation right from the beginning.

A farther extension of U2DIIF code to the computation of unsteady 'low

problems involving multiple airfoils may be worth pursuing. Other research works that

could be done based on U2DIIF code are in the area of incorporating more variety of

riaid body motions into the code either in the form of closed-form equations or

tabulated time history of the positions and rates of motions. It is important that one

should use as close as possible, in the code, a rigid body motion that describes the

physical motion before generating any numerical unsteady flow results for meaningful

comparison to test data. This fact has been well illustrated and emphasized in the

comparison of results of case-runs involving a step change to that of a ramp change in

AOA with a fast rate which one could regard as a step in reality. However, remarkable

difference in transient aerodynamics has been shown.
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APPENDIX A
U2DIIF PROGRAIM LISTINGS

CZCCCC~CCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCC CCCCCCCCClCCCCCCCCC~CC
C

C PROGRAM U2DIIF C
C C
C UNSTEADY MOTION OF A TWO-DIMENSIONAL AIRFOIL C
C IN INCOMPRESSIBLE INVISCID FLOW C
C USING ?ANEL HETHODS BASED ON THE HESS & SMITH C
11 C
cCcc"_cCcCccc%. ,-cccCCCCCccCCCC CcCcccccCCccccccccccccCCccccccccccCcccCc

COMMON ,BOD/ IFTLAG.NLOWER,NUPER.NIODTOT,X(202) ,Y(202),
-COSTHE(2401),SITHE(201),SS,N'Pl,NP2

COMMON /WAK/ VYW,VXW,WAKE,DT
COMMON /WAK2/ VYWK,VXWK
COMMON /SING/ Q(200) GAMMA,QK(20O),GAMK
COMMON ./.ORV/ CV(M00SXC(200),Y-C(200),M,TD,CVVX(200),CVVY(200)
COMMON /?CT,' ?H:;200? ,H:X(200
COMMON ,'UT/~ 200 7VG 200) ,XGF,UGUST,VGUS-
COMMON jEXTV1/ tJE(200)
DIMENSION XXC(200) ,YYC(200)

C INPUT FROM FILE CODE 5 AND SET UP PANEL NODES AND SLOPES

- - 3.:415926585
WRITE (6,1003N

1003 FORMAT (;//, ATA READ FROM FILE CODE 1',//)
CAL iNDAT
CALL SETUP
READ (1,501) ALPI,DALP,TCON,FREQ ,PIVOT,UGUST,VGUST
WRITE (6,501) ALPI,DALP,TCON,FREQ,PIVOT,UGUST,VGUST

501 FORMAT (7F10.6)
READ (1,501) DELHX,DELHY,PHASE
WRITE (6,501) DELHX,DEL.HY,PHASE

REA (150)TF,DTS,TOL,TADJ
WRITE (65201) TF DTS TOLTADJ
IF (IFLA EQ. oS WRITE (6,1005)

1005 FORMAT (II COORDINATES OF AIRFOIL NODES',
+ /I3, X/C 1,6X ' YIC' /)
IF (ILAG .EQ. O(XF WRITE' (6,1010) (X(I),Y(I),I=1,NODTOT+1)

1010 FORMAT (F1O.6,F10.6)
WRITE (6,1020) SS

C1020 FORMAT(//,' AIRFOIL PERIMETER LENGTH = ',F1O.6,I)

C STEADY FLOW CALCULATION AT ALPI

ALPHA =ALPI
WRITE (6,1030) ALPHA

1030 FORMAT (/1,' STEADY FLOW SOLUTION AT ALPHA =',F1O.6,/)
:7 (ALPHIA .GT. 90.) GO TO 200
:;SALF7 7=33S'ALHiA~t?I/130.

:AL . 3INAL AL3.-)

CALL GAUSS (1)
CALL VELDI S( SINALFCOSALF)

C CALL FANDM( SINALF,COSALF)
C INITIALISATION FOR UNSTEADY FLOW CALCULATION TO BEGIN
C

HiX = 0.0
HY = 0.0
HXO = 0.0
HYO = 0.0
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OHX = 0.0
DHY = J.0
liX. = 3.0

ALP = AL?,
DA = 0.0
COSDA = 1.0
SINDA = 0.0
OMEGA = 3.0
: GF = 0.3
ANGLE = AL+?I/!80. + ATAN(VGUST/(i.+UGUST))
C0SAN G = COS ANGLE)
SINANG = SINANGLE)
DO 100 IG = 1,NODTOT
UG(7G) = 0.0

o0o 7G(:G) 3.0
PHA = PHASE*P!/130.
7XW = COSALF
V-YW = SINALF
GAIK.; A rk
T =0.0
M =0.0
TOLD = 0.0

R:CiD BODY MOTIONS OF AIRFOIL

:F (FREO .NE. 0.0) GO TO 1
-2 (DAL? .-O. 3.0, G0 TO 2
IF (TCON .N. 0.0) GO TO 3
ALPHA = AL?! + DALP
OSALF = COS(ALPA"P?!'1"30.)

57 "TALF = ),SN(ALPA*PI/i 0.)3 DT =DTSDTS

O TO 60
2 IF ((UGUST .E3. 0.0) .AND. (VGUST .EQ. 0.0)) GO TO 200

DT = 6T
D = DTS

GO TO 60
DT = 2.0*PI/(FREQ*DTS)
TD = DT

60 T = DT
WRITE (6,1051)

1051 FORMAT (////,' '*I*
+ ' *** BEGIN UNSTEADY FLOW SOLUTION ****',

40 M M+ 1
IF (T .GT. TF) GO TO 200

C
C STORE CORE VORTEX COORDINATES FOR TIME STEP ADJUSTMENTS
C

Ir (M .EQ. 1) GO TO 50
DO 51 I = 1,M-1
xxc(I) = Xc(I)51 YYC(1) =YC(l)

50 .: FREO .NE. 0.3 ) GO TO 11
'AL? ':0. 0.0) :0 rO '2: :Az ,:iO. 0.,3) 30 20 2

C STEP CHANGE IN AOA
C

IF (TADJ .NE. 0.0) GO TO 70
TD = FLOAT(M+1)*DTS
GO TO 70

C
C MODIFIED RAMP CHANGE IN AOA
C
33 IF (T .GT. TCON) GO TO 34

DAL = DALP * (3.-2.*T/TCON)*(T/TCON)**2
ALPHA = ALPI + DAL
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COSALF =COS (ALPHA*PI/180.
SINALF = SIN(ALPHA*PI/180.
DA = ALPHA - ALP
COSDA =COS (DA*PI/180.
SINDA =SIN (DA*PI/180.
OMEGA =- (DALP*PI/180. * (6.*T/(TCON*TCON)) *(1.-T/TCON)
DHX = PIVOT * (1.- COSDA)
DHY =- PIVOT * SNDA

Lly =PIVOT * OMEGA
MTCON = M4
GO TO 70

34 DAL =0.0
ALPHA = ALPI + DALP
COSALF =COS (ALPHA*PI/180.)
SINALF = SINR(LPHA*PI/180.)
DA =0.0
COSDA =1.0
SINDA =0.0
OMEGA = 0.0
DHX =0.0
DHY = 0.0
UY = 0.0
IF (TADJ .NE. 0.0) GO TO 70
TD =FLOAT(M.I1-MTCON)*DTS
GO TO 70

C
C SHARP EDGE GUST (UGUST AND/OR VGUST)
C

22 XGF =T
DO 110 IG = l,NODTOT

UG ( Gj = 0.0

XG = G*COSALF + Y(IG)*SINALF
XGP1 = XNIG~?l)*COSALF + Y(IG+1)*SINALF
IF (IG .LT. NLOWER+1) GO TO 120
IF (XGF .LE. XG) GO TO 110
IF (XGF .GE. XGP1) GO TO 111
FAC =(XGF - XG)/(XGP1 - XG)
UG (IG) = UGUST*FAC
VG(IG) = VGUST*FAC
GO TO 110

111 UG(IG) =UGUST
VG(IG) =VGUST
GO TO 110

120 IF (XGF .LE. XGP1) GO TO 110
IF (XGF .GE. XG) GO TO 121
FAC = (XGF - XGP1)/(XG -XGP1)

UGMWG = UGUST*FAC
VG (IG)= VGUST*FAC
GO TO 110

121 UG(IG) = UGUST
VG(IG) =VGUST

110 CONTINUE
IF (XGF .LE. COSALF) MGUST =14
IF (TADJ .NE. 0.0) GO TO 70
IF (XGF .GT. COSALF) TD = FLOAT(M+1-MGUST)*DTS
GO TO 70

:RT LT0 HiARMONIC 3SC 'A-.'N
11l IF (DALP .NE. 0.0) GO TO 12

HX = DELHX * SIN(FREQ*T + PHA)
HY = DELHY * SIN (FREQ*T)
DHX =HX -HXO
DHY = HY -HYO
UX = DELHX*FREQ*COS FREQ*T+PHA)
tJY =DELHY*FREQ*COS FREQ *T)
GO TO 70

C
C ROTATIONAL HARMONIC OSCILLATION
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C
12 DAL =DALP*SIN(FREQ*T)

ALPHA =ALPI + DAL
COSALF =COSR(LPHA*PI/180.
SINALF =SIN (ALPHA*PI/180.)
DA =ALPHA - ALP
COSDA =COS (DA*PI/180.)
SINDA =SINR(A*PI/180.)
OMEGA =- (DALP*DI/180.) * FREQ *COS(FREQ*T)
UY =PIVOT * OMEGA
DHX =PIVOT * (1.-COSDA)
DHY =-PIVOT * SINDA

C
C TRANSFORM CORE VORTEX COORDINATES W. R. T. NEW AIRFOIL POSITION
C

70 IF (M .EQ. 1) GO TO 80
Do 90 I = 1,M-1

xc~l) = XXC I) + CVVX I DT
YC ) =YYC(I + CVVYI *lDT

XCO = Xc(
YCO =YC(I)
XC(I) = XCO*COSDA - YCO*SINDA + DHX

90 YC(I) =XCO*SINDA + YCO*COSDA + DEY
80 CONTINUE

WRTE(,1001) T,DT
1001 FORMAi"T /I//,' TIME STEP TK = 1,Fl0.6,10X,lTK -TKM. ,0 37

WRITE (6,1004) ALPHA,OMEGA,UX,UY
1004 FORMAT (I'ALPHA(T) -,FlO.6,5X,',OMEGA(T)=

+ IU(T) = ,F1O.6,5X,' V(T) = ,l.,'/
+ lX,' NITR VXW VYW WAKE THETA GAMMA')

C
C CALCULATE THE TRAILING EDGE WAKE ELEMENT
C

NITR = 0
10 WAKE S QRT(VYW*VYW+VXW*VXW)*DT

THENP1 = ATAN2(VYW,VXW)
COSTHE (NP1) = COS (THENPi)
SINTHE (NP1) = SIN (THENPi)
WRITE (6,1002) NITR,VXW,VYW,WAKE,THENP1 ,GAMK

1002 FORMAT (15,4F10.6,E14.6)
X(NP2) = X(NPl) + WAKE*COSTHE (NP1)
Y(NP2) = Y(NP1) + WAKE*SINTHE (NP1)
CALLT INFL NT

CAL COF SlNALF,COSALFOMEGA,UX,UY)
CALL GAUSS 2)
CALL KUTTA (ALPHA, SINALF, COSALF ,OMEGA, UX,UY)
CALL TEWAK (SINALF,COSALF)
TOLl = ABS (VYW - VYWK)
TOL2 = ABS (VXW - VXWK)
IF ((TOLl .LT. TOL) .AND. (TOL2 .LT. TOL)) GO TO 20
VYW = VYWK
VXW = VXWK
IF (NITR .GT. 200) STOP
NITR = NITR + 1
GO TO 10

20 WRITE (6,1011) NITR
i 1 1:: ?RlAT ' CIONVERGED SOLUTI ON OBTAIN11,ED AFT ER NIT?. :2)

ALL ? RESS 5 INAL, ,W2OSALF, OMEGA, UX, U"I
- ,\'UGUST EQ. 0J.0) .AND. iVGUST.-Q J)50T30

CALL FANDM (SINANG ,COSANG)
GO TO 400

300 CALL FANDM (SIN'ALF,COSALF)
400 CONTINUE

C
C ADJUST TIME STEP (TADJ .NE. 0.0) IF NECESSARY
C

IF (TADJ .EQ. 0.0) GO TO 95
WRITE (5,2001)

200. FORMAT I DO YOU WANT TO ADJUST TIME STEP ? 0 -NO, 1 -YES')

READ (,SIDT
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IF'IDT Z2. *)) GO TO 95
DT.ADJ nT
TTOLD DT

WRITS ',6,!C06)
1006 FORMAT ~// ,' 3ACK-TRACX fZOMPUTAT:ON AND ADJUST TIME-STEP',!!)

GO TO so
C
C WAKE ELEMENT LEAVES TRAILING EDGE AS A CORE-VORTEX

XC(M = :X(NPI, - '.35WAKE~lCOS7HE~NP1
Yc(M = Y( NPI) + ).NP 1)mSI
CVVX (H) =VXWVV(M) = VYW
WRITE (6,1052)

105-1 7ORMAT ',/ :RAI'L:NG *7ORT:C!l^_S DATA /7
+4X, M' ,4X, X (M) ,6, ,'Y(M) ,6X, CIRC )
DO 900 :=I_

900 WRITE 6 i050) (c),cIc()
2.050 FORMAT(IS,3F'J.6,

CALL CORVOR (SINALF,COSALF)
C

RE-INIT:AL:sE PARAMETERS FOR NEXT TIME STEP CALCULATION

Iwo 3o 0 !.ITCDTOT

30 CON'TINUE
GAMMKA = GAMK
AL? =ALPHA

0 = EiK

TOLD =

T6 T+TD
GO TO 40

200 STOP
END

CCC CCC CC ccCC CC CCCCCccccccccCCC CCC CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE BODY(Z,SIGN,X,Y) C
C C
C RETURN COORDINATES OF POINT ON THE BODY SURFACE C
C C
C Z = NODE-SPACING PARAMETER C
C X,Y =CARTESIAN COORDINATES C
C SIGN = 41. FOR UPPER SURFACE C
C -1. FOR LOWER SURFACE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE BODY(Z,SIGN,X,Y)
COMMON /PAR/ NACA TAUEPSMAX,PTHAX
IF (SIGN .LT. 0.0$ Z =1. - Z
CALL NACA45 (Z ,THICK, CA1BER,BETA)
X =Z - sIGN*THICK*SIN(BETA)

7 = C:UIBER I S:GN*~THIIcK*COS(BETA)

C C
C SET COEFFICIENTS OF N EQUS ARISING FROM FLOW C
C TANGENCY CONDITIONS AT MID POINTS OF PANELS C
C SOLVING THE N-SOURCE STRENGTHS IN TERMS OF THE C
C VORTICITY STRENGTH (RESULTING IN 2 RIIS) C
C KUTTA CONDITION IS SATISFIED SEPARATELY TO OBTAIN C
C THE VORTICITY STRENGTH C
C THIS SOLUTION METHOD IS DESIRED FOR UNSTEADY FLOW C
C C
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ccccccccccccccccccccccl cccccccccccccccccccccccccccccccccccccccccccccccc
SUBRCU::'rE COEF 'S:NTALF. ,:OSAL?--OMEGA,UX,UY)
ZOMMON 'SOD/ FA.!.G..NLOWER,NU??ER,NODTOT,X(2O2) ,Y(202),

'OS7;HE(201),SINTHE(201),SS,NP1,NP2
COMMON /COF/ A212IIQ
COF~M0N ISING/ O(200),GAMMA, QK(200),GAMK
COM14ON /WAK/ VY.W, XW WAKE, D

CMO /CORV/ (:(0iX(0)Y(0)MTCX20,CY20
CC^U!ON ..'DI/ ALNI(01,2012 ,3BN(201) ,AYNP1 (201) ,BYNP1( (01)

COMMO -:NF/ CN(201,200),CCT(201 ,200 )CYNPI (200) CXNP1 (200)
CC01'YON ,GUS T! G00,G(0),GUUTVUS
NECS =NODTOT
NPI = NODTOT + 1
NP2 = NODTOT + 2

C
:NTIL:SE COEFFICIENTS

:O 9C : !,NODTOT
DO 90 J = ,NP2

90 A :,:) = o
C
C SET LHS MATRIX A(I,J)
C

DO :2-0 >NOTO
MI~ID = J.3 x:

= =0.0
";o 110 J = I'MODT0T

A(:J) = AANl(I j)
3 = B + BBN(l,J)/

iio CONT::1ur

.lIN THE RIGHT HAND SIDE

A(:,N[Pl -8 + BBN(I NP1)*SS/WAKE
AklN2 -3BN(I ,NPl S*GAyy.A*SS/WAKE

+ + SINTHE~ I)(1 U( COSALF-VG(I)*SINAF+UXl
+ -CSTHE I*((.iGI *SINALF+VG(I)*COSALF+UY)

C + + OMEGA*(YMID*SINTHE(I) + Xa4ID*COSTHE(I))

C ADD CORE VORTEX CONTRIBUTION

IF (M .EQ. 1) GO TO 140

DO 100 N 1 1mm1
A(I,NP2) =A(I,NP2) - CCN(I,N)*CV(N)

100 CONTINUE
140 CONTINUE
120 CONTINUE

RETURN
END

CCCCCCCC ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C C
C SUBROUTINE COFISH(SINALF,COSALF) C
C C

SET COEFFICIENTS OF LINEAR SYSTEM - N+1 EQUATIONS C
'I EC-US - 'LCW TANGENCY AT MID ?OINTS OF ?ANqELS c

ECU :-TT :ONDI:0N 'T TRA:L:NIG EDGE ?ANELS
:H:s )OLUJ-:Ol4 :ETMOD) --S -FFECTIVE FOR STEADY FLOW, :'I0

1TERATION 1S REQUIRED, N-SOURCE STRENGTHS AND 1 C
C VORTICITY STRENGTH ARE SOLVED SIMULTANEOUSLY C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE COFISH(SINALF ,COSALF)
COMMON /BOD/ IFLAG,NLOWERNUPPER NODTOTX(202) Y(202),

+ COSTHiE (21),SINTHE( 01),SS,NP1,NPI
COMMON /COF/ A(201, 11),KUTTA .

COMMON /NUM/ PI,PI2INV
KUTTA =NODTOT + 1

C
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C INITIALISE COEFFICIENTS
C

DO 90 J = 1,KUTTA
90 A(KUTTA,J) =0.0

C
C SET VN = 0 AT MID-POINT OF I-TH PANEL
C

DO 120 I = 1,NODTOT
XMID =5*((I XI

+ Y(1+1YMiD = :R +* (Y(
A(I,KUTTA) = 0.0

C
C -- FIND CONTRIBUTION OF J-TH PANEL
C

DO 110 J = 1,NODTOT
-LOG = 0.0
FTAN = PI
IF (J .EQ. I) GO TO 100
DXJ = XMID -X J)
DXJP = XMID - X (J+l)
DYJ = YMID -Y J)
DYJP =YMID - Y Jl
FLOG = S *ALOG( DXJP*DXJP+DYJP*DYJP)/(DXJ*DXJ+DYJ*DYJ))
FTAN = ATAN2 (DY P*DXJ-DXJP*DYJDXJP*DXJ+DYJP*DYJ)

100 C"T:MlTJ = COSTHE I)*COSTHE(J) + SIN~THE(I)*SINTHE(j)
STIMTJ = SINTHE (I)*COSTHE(J) - COSTHE(I)*SINTHt(j)
A(I,J) = P121NV* (FTAN*CTIMTJ + FLOG*STIMTJ)B = P121NV* (FLOG*CTIMTJ - FTAN*STIMTJ)
A(IKUTTA) = A(I,KUTTA) + B
IF R(I .GT. 1) .AND. (I .LT. NODTOT))GO TO 110

C -- IF I-TH PANEL TOUCHES TRAILING EDGE,
C ADD CONTRIBUTION TO. KUTTA CONDITION
C

A (KUTTA,J) = A(KUTTAJ - B
A (KUTTA,KUTTA) = A(KUTTA,KUTTA) + A(I,J)

110 CONTINUE
C
C FILL IN 1QNOWN SIDES
C

120 0 ,1 UTA+l) =SINTHE(I)*COSALF - COSTME(I)*SINALF
A(KUTTA,KUTTA+l) = COSTHE(1 + COSTHE (NODTOT)) *COSALF

+ REUR (INTHE(1) + SINTHE(NODTOT))*SINALF

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE CORVOR (SINALF,COSALF) C
C C
C COMPUTE THE LOCAL VELOCITIES OF CORE VORTICES C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CORVOR (SINALF,COSALF)
COMMON /BOD/ IFLAG,NLOWER,NUPPER,NODTIOT,X(202) ,Y(202),

+_ COSTHE (201),SINTHE( 201),SS,NP1,NP2
::MMON SING1 %','(20YGAMMA qK(2M0,GAMK

CWIHW.K/ '77W,.7MW, WAK,3T
_0-2-10N 'CORV/ C;(200),XC(2o (200), o) , TD,c,7x (2oo) =rz Y(:oo')
COMMON /INF3/ AMY (200,201) ,BMY200,201)
COMMON /INF4/ CMY (200,200) CMX ( 200,200)
COMMON /POT/ PHI (20),PHIK (200)
COMMON /GUST/ UGM(0 VG(200),XGF,UGUST,VGUST
IF (M .EQ. 1) GO TO 46
mm1 M -1

C
C VELOCITY COMPONENTS OF CORE VORTICES AT CURRENT TIME STEP
C

uGC = 0.0
VGC = 0.0



DO 10 N =1,IMfl
XG z XC(N)*COSALF + YC(N)*SINALF
IF (XG .G-. XGF) GO TO 5
UGC = UGUST
VGC = VGUST

S VY =SS*BMY(N,NP1)*(GAMMA-GAMK)/WAKE+
+ (1.+UGC)*SINALF+VGC*COSALF
VX = SS*A11Y(N NP1)*(GAMMA-GAlK)IWAKE+

+ (1..+UGC)7COSALF-VGC*SINAL
DO 20 J = 1,NODTOT
VY = VY +AMY (NJ)*QK~ ( + +BMYN (MJ*GAIK
VX = VX -BMY (NJ)* K (J + AMY (NJ)*GAMK

20 CONTINUE
C
C ADD CORE VORTEX CONTRIBUTION
C

DO 30 MC = 1,MM1
IF (MC .EQ. N) GO TO 30
VY = VY +CMY (NMC) *Cv~mc
VX = VX + CXN,MC)*CV(C

30 CONTINUE
C
C COORDINATES OF CORE VORTICES AT NEXT TIME STEP
C

CCVXMN = VX

10 CONTINUE
40 CONTINUE
50 CONTINUE

RETURN
-ND

Cc
C SUBROUTINE FANDM(SINAL#,COSALF) C
C C
C COMPUTE AND PRINT OUT CD,CL,C4 C
C INTEGRATE PRESSURE DISTRIBUTION BY TRAPEZOIDAL RULE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE FANDM(SINALF ,COSALF)
COMMON /BOD/ IFLAG,NLOWER,NUPPER,NODTOT,X(202) ,Y(202),

+ COSTHE 201),SINTHE(201),SS,NP1,NP2

COMXO /CD 0.0 2
CFY = 0.0

CM = 0.0
DO 100 I = 1,NODTOT
XMID = .5*X()+X(1)
YMID = *5* (Y(I + Y (1+1)

CFX =CFX +CP(I*DY
CFY =CFY -CPjI)*DX
CM = CM + CP( I) (DX*XMID + DY*YMID)

100 CONTINUE
CD = CFX*COSALF + CFY*SINALF
7- = CFI*C0SALT F*SNL

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE GAUSS(NRHs) C
C C
C SOLUTION OF LINEAR ALGEBRAIC SYSTEM BY C
C GAUSS ELIMINATION WITH PARTIAL PIVOTING C
C C
C A = COEFFICIENT MATRIX C
C NEQNS = NUMBER OF EQUATIONS C
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C NRHS =NUMBER OF RIGHT HAND SIDES C
C

C RIGHT-FEAND SIDES 1ND SOLUT:ONS STORED 'N C
-OLUI.NJS NEQNS+. TH!RU N'EQNS+NRHS OF A C

. ;: C
'tCCCCCCCCZCCCZCCCCCCCCCCCCCCCCCC-'CCCCCCC%^CCCCCCCCCCCCCCCCCCCCCCCCCCCcc

SUBROUTINE GAUSS (NRF-S)
COMMiON /COF/ A(201,222NEQNS
NP = N\EONS-
NT CT = N>IEONS

C
C GAUSS REDUCTI:ON
C

CDO 150 I 2..NEQNS -Y 1
-- SEARCH{ TOR LARGEST T11Y IN f:-1TH COLUMNI

C ON OR BELOW M A:TN DIAGONAL

:.MAX = i
AMAX = ABS (A(IM, IM))
DO 110 J = I,NEONS
IF (AMAX .GE. AB9(A/k:,IM))) GO TO0 110

.;!AX A B S (A( '
LO COCNT :NUE

C
C -- SWITCH (:-1)TH AND IMAX-1!1 EQUATIONS
C

IF (I!4AX_.EQ. 1IM) GO TO 140

:TMP = -

A(MJ) .1 (:NAXJ

1.30 CNTINUE
C
C ELIMINATE (I-1)TH UNKNOWN FROM
C ITH THRU (NEQNS)TH EQUATIONS
C
140 DO 150 J 1,NEQNS

R A(J,IM4)/A(IM, IM)
DO 150 K = INTOT

150 A(J,K) = A(J,k) - R*A(IM,K)
C
C BACK SUBSTITUTION
C

DO 220 K)= NP,NTOT
A(NEQNS,K) A(NEQNS,K)/A (NEQNS,NEQNS)
DO 210 L =2,NEQN
I = NEQNS+ 1 -L
IP =I+1
DO 200 J = IF NEQNS

200 A (I,K) = A(IKS/-(A(I J)*A(J,K)
210 A (I,K) = A(I,K)/A(I,15
220 CONTINUE

RETURN

ccc------- -- - - - - - - - - - - - -

C SUBROUTINE 1NDATA C
C C
C SET PARAMETERS OF BODY SHAPE C
C FLOW SITUATION, AND NODE DISTRIBUTION C
C C
C USER MUST INPUT C
C NLOWER = NUMBER OF NODES ON LOWER SURFACE C
C NUPPER = NUMBER OF NODES ON UPPER SURFACE C
C PLUS DATA ON BODY AND SUBROUTINE BODY C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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SUBROUTINE INDATA
DIM!ENS ION TITLE (20)
COMMON "BOD/ IFLAG,NLOWER,NUUPPER,NODTCT ,X(202) Y(202),

+_ COSTH!(201) ,SINTWE(201) ,SSNPI,NPi
_0MMCN /P?.R/ NACA, -AU, _PSMAX,PTM.AX
READ (1.501) ITITLE
WRITE (6,501) !TITLE
0O 0 1- := 1, !TITLE
READ !!,::2) TI:TLT:

io 4T "6,503) 7:7L41
301 TORMAT 3:5)
g02 CRMAT 20A4)
503 FORMAT (IX,20A4)

READ (1,501) IFLAG ,NLOWER,NUPPER
WRITE (4,501) IFLAG,NLOWER,NUPPER

'lFtAG .NE.- 0) RETUJRN
READ (1,501) NIACA
WR:--- "5~,301) NACA

=E~ NACA/IOUO
ITMAX =NACA/100 - 10*IEPS
HOAJ = NACA - 1000*IEPS - 100*IPTMAX
EPSMAX = EPS*C.01
PTMAX =IPTMAX*O.l

!'IEPS .T. 10) RETURN

7?SMAX 2.6595*?TMAX**3
iiET'JRN
END

CCCC^_ cccc ccc CC CC CCC CCC -CCCCCC C C c CCCCCC CCC CCCC CCCCCCCCCCCCCC CCCCCCCCCC
C

c STUBROUT:NE :NFL ONITR) C
C C

CALCULATE INFLUENCE COEFFICIENTS C
C C

CCcCCCCc^CcCCCcCCCcCCcccccccCcccCccccccCcccccccCCccCccccccccccccc
SUBROUTINE INFL (NITR)
COMMOCN /BOD/ IFLAG,NLCWER,NUPPER NODTOT,X(202) Y(202),

+ COSTHE-(201) ,SINTHE(i01),SS,NP1,NPI
COCMON /NUM/ ?I,P12:iqV
COMMON /WAK/ VYW,VXW WAKEDT
COMMON /CORV/ CV(2OOS,XC(2oo) ,C(200) ,M,TD,CCVX(200) ,CCV(200)
COMMON /INF1/ AAN (201,201) ,BBN (2011 AYNP1f (21 ,BYNP1 (201)
COMMON /INF2/ CCN (201,200) ,CCT (2 01,200) ,CYNP1 (200) CXNP1 (200)
COMMON /INF3/ AMY(200,201) BMY(200,201)
COMMON /INF4/ CHY (200,200) CMX(200,200)
IF ((M .GT. 1) .OR. (NITR .GT. 0)) GO TO 510

C
C AAN(I,J) :NORMAL VELOCITY INDUCED AT MID-POINT OF I-TH PANEL
C BY UNIT STRENGTH DISTRIBUTED SOURCE ON THE J-TH PANEL
C
C BBN(I,J) :NORMAL VELOCITY INDUCED AT MID-POINT OF I-TH PANEL
C BY UNIT STRENGTH DISTRIBUTED VORTEX ON THE J-TH PANEL
C

DO 120 I1 1,NODTOT

F IAN =PI
IF (J .EQ. I) GO TO 100
DXJ z XMI D-:XJ)
DXJP = XMID -X(+1)

DYJ SYMIDYJ
DyJp = YMD Y (y Jj+)
FLOG = .5*ALOG( (DXJP*DXJP4DYJP*DYJP)/(DXJ*DXJ4DYJ*DYJ))
FTAN = ATAN2(DYJP*DXJ-DXJP*DYJ, DXJPIIDXJ +DYJP*DYJ)

100 CTIMTJ = COSTHE(I)*COSTHE(J) + SINTHE(I)*SINTHE(J)
STIMTJ = SINTH9 (I)*COSTHE(J) - COSTHE(I)*SINTHE(3)
AAN,(1,J) = P12INV*(FTAN*CTIMTJ + FLOG*STIMTJ)
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BBN(I,J) = P12INV*(FLOG*CTIMTJ -FTAN*STIMTJ)

110 CONTINUE
120 CONT:NUE
510 CONTINUE

I mNP1
XMID = .5* (()+X +)
YMID = .* B (YI)+ Y( 1+1))f
DO 130 J = 1,NP1
FLOG = 0.0
FTAN = PI
IF (3 .EQ. I) GO TO 135
DXJ =XMID - XJ)
DXJP =XMID - X J+1)
DYJ =YMID - YDYJP =YMID - Y (3+)
FLOG z .S*ALOG( (DXJP*DXJP+DYJP*DYJP) /(DXJ*DXj+DYJ'nDYJ))
FTAN = ATAN2 (YJP*DXJ-DXJP*DYJ,DXJP*DXJDYJP*rDYJ)

135 CTIMTJ = COSTHE (I)*COSTHE(J) + SINTHE(I)*SINTHE(J)
STIMTJ =SINH ( 1)*COSTHE (J) - COSTHE (I)*SINTHE(J)
AAN (1,3) = P12INV*J(FTAN*CTIMTJ + FLOG*STIMTJ)
EBN (1,3 = P12INV* (FLOG*CTIMTJ - FTAN*STIMTJ)

C
C AYNP1(J) :Y - VELOCITY INDUCED AT MID POINT OF WAKE ELEMENT
C (NP1-TH PANEL) BY UNIT STRENGTH DISTRIBUTED SCtJRCE7
C ON J-TM PANEL
C
C BYNP1(J) :Y - VELOCITY INDUCED AT MID POINT OF WAKE ELEMENT
C (NP1-TM PANEL) BY UNIT STRENGTH DISTRIBUTED VO0RTEX
C ON J-TM PANEL
C

AYnl?: (j) = P12:Nv*(FTAN*COSTME (3) - FLOG*SINTHiE(J2
BYN~. J) = ?12iNV*JLOG*COSTHE (3 + FTAN*SINTHE(J),

130 CCNTINUE
DO 140 I = 1,NODTOT
XllID = .5* (X()+ X( +1))YMID = .5*R(Y(I + Y( 1+1)
3 = NP1
DXJ =XMID - XDXJP = XMID - X (i+)
DYJ =YMID -YJ)
DYJP = YMID - Y1 J+1 l*XPDJP*DYJP) /(DXJ*DXJ+DYJ*DYJ))
FLOG = 5*ALOiG DXJ *XPD
FTAN = ATAN2 (DYIP*DXJ.DXJP*DYJ DXJP*rDXJ+DYJP*DYJ)
CTIMTJ = COSTHE(I) (3) + SiNTHE (I)*SINTHE (3)
STIMTJ = =SINTHE (I) *COSTH(j) ! COSTHE (I *SINHE(3)
AAN ( ,)=P12INV*QFAN*CT0MTJ + FLOG*STIMTJ)
BBN (1,3) = P12INV* (FLOG*CTIMTJ - FTAN*STIMTJ)

140 CONTINUE
C
C CCN(I,J) :NORMAL VELOCITY INDUCED AT MID-POINT OF I-TH PANEL
C BY UNIT STRENGTH N-TM CORE VORTEX
C
C CCT(I,J) :TANGENTIAL VELOCITY INDUCED AT MID-POINT OF I-TM PANEL
C BY UNIT STRENGTH N-TM CORE VORTEX
C

IF (M -EQ. 1) RETURN

F~ 7 . J)0 TO 520
)0 22-0 = .NCDTOT
XMID 0 051, +XI +X (1+1)
YMID =0.5* (Y I) +Y (1+1)
DO 210 N = 1 MM1
DX =XMI6 -XC(N)
DY = YID -YC(N)
DIST = SQRT(DX*XD*Y
C0ST1QN = DX/DIST
SINTHN = DY/DIST
CTIMTN = COSTHE (I) *COSTHJN + SINTHE (I)*SINTHN
STIMTN = SINTHE (I) *COSTp3 - COSTHE (I *SINH
CCN(I,N) = -P121NV*CTIMTN/DIST
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CCT(I,N) = -P12INV*STIMTN/DIST
210 CONTINUE
220 CONTINUE
520 CONTINUE

I =NP1
XMID = 0.5* (X( + X(I+
YMID = 0.5* (Y (I + Y(I+fl
DO 230 N = 1,MM1
DX =XMID -XC(N)
DY =YMID -YC(N)
DIST = SQ RT(DX*DX+DY*DY)
COSTHN = DX/DI ST
SINTHN = DY/DIST
CTIMTN = COSTHE (I) *COSTHNJ-.+ SINTHE (I) *SINTHN~
STIMTN =SINTHE (I) *COSTHN - COSTHE (I) *SINTHN
CCN (I,N) = P12INV*CTIMTN/DIST

C CCT (I,N) = -P12INV*STIMTN/DIST

C CYNP1(N) :Y - VELOCITY INDUCED AT MID POINT OF WAKE ELEMENT
C (NP1-TH PANEL) BY UNIT STRENGTH N-TH CORE VORTEX
C
C CXNP1(N) :X - VELOCITY INDUCED AT MID POINT OF WAKE ELEMENT
C (NP1-TH PANEL) BY UNIT STRENGTH N-TH CORE VCRTE
C

CYNP1 'N) = -P12INV*C0STHN/DIST
CXNP1 N) = +HI21NV*SINTHN/DIST

230 CONTINUE
C
C AMY(N,J) :Y - VELOCITY INDUCED AT N-TH CORE VORTEX BY UNIT
C STRENGTH DISTRIBUTED SOURCE ON THE J-TH PAkNEL

1C BMY(N,J) :Y - VELOCITY INDUCED AT N-TH CORE VORTEX BY UNIT-
C STRENGTH DISTRIBUTED VORTEX ON THE :-;N ?ANEL7
C

IF (NITRN GT. 0) GO TO 530
DO 2 N =1,MN1

XMID =XC(N
YMID =YC(N
DO 310 J = 1,NODTOT
DXJ = XMCID -X(J)
DXJP = XMID - X (J+1)
DYJ =YMID - YJ)
DYJP = YMID - Y J+1)
FLOG = .5*ALOG( DXJP*DXJP+DYJP *DYJP)/(DXJ*DXJ+DYJ*DYJ))
FTAN = ATAN2(DYJPDX ?J*DYJ ,DXJP*DXJ +DYJP*DYJ)
AIY(NJ = P12INV*QFAN*COSTHE (Jl - FLOG*SINTHE (3))BMY(N ,J) = P121NV*( FLOG*COSTHE (3 + FTAN*SINTHE (J)

310 CONTINUE
320 CONTINUE
530 CONTINUE

DO 330 N = 1 mm1
XMID =XC(N)
YMID =YC(N
3 NPI
DXJ =XMID -X(J)
D)XJP = XIIID - X (3+1)

HTAN =ATAN2 (DYJP*DXJ-DXJP*DYJ ,DXJP*~DXJ+DYJP*DYJ)
AMY(N,Jfl = P12INV* (FTAN*COSTHE (J) - FLOG*SINTHE (3)
BMY(NJ = P12INV* (FLOG*COSTHE (J) + FTAN*SINTHE (J)

330 CONTINUE
C
C CMY(N,MC) :Y - VELOCITY INDUCED AT N-TH CORE VORTEX BY UNIT
C STRENGTH MC-TH CORE VORTEX OTHER THAN ITSELF
C
C CMX(N,MC) :X - VELOCITY INDUCED AT N-TH CORE VORTEX BY UNIT
C STRENGTH MC-TH CORE VORTEX OTHER THAN ITSELF
C
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lF (NITR .GT. 0) RETURN
DO 420 N _1M

"MI D = C N)
DO 410 MC lM
:F ,MC wE.N GO TO 410
DX = 116 - xC(MC)
DY :T:D - YC(mc)
DIST 5cRT(DX*0X+DY~lDY)
CST-N = DA/D1ST
SINTHN =DY/DIST

CIT I N" C) =-?121N"'CCSTlJN/DIST
CMX NMC) = +P121NV-SINTliN/DrIST

410 CONTINUE
420 CONTINUE

RETURN
END

-c~cC cc"C~cccc CCZCCCCCCCCCC~cCCZCClcc CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

c SUBROUTINE KUTTA (AkL?iA,SINALF,COSALF,OMEGA,UX,UY) C
C C
C USING KUTTA CONDITION TO DETERMINE VORTICITY C

C C

,UBRCUT:NE K'JTTA (ALPHA,SINALF. COSALF ,OMEGA,UX,UY)
~.0~ON "BOD IFAG,NILOWER,: IUPER,NCIDTOT,X(202) ,Y(,202),

+ COSThE(201) ,SiNTHE(201) ,SS,N?1,NP2
C.01MCN /CF/A(20121 .%EOS
COMMON /S:NG/ O(200),GAMIOA;Q K(200),GAMK
COMMON /WAX/ 17?W VXW WAKE, DT

^MMcN /=CRV/ c(0),:~o)jC20 MTVx2Oc120
COI~IO /NF1 AN(21~011,2BN 201 20f) ,AYNP1 (201) BYNP1(21

COMMON /INF2,/ CC4c201,200),:CT,201,20 ,CN1(0 )CaP 200)
ZOMMON /GUST ' UG(2 -00) ,7G(200) ,XGFJGUST,VGUST
DIMENSION Bl,200),B2( 200),AA(2),BB(2)

C
C RETRIEVE SOLUTION FROM A-MATRIX
C

DO 50 I = 1,NODTOT
Bl(l) =A(IN1

50 B2(1) = (I,NP2)
C
C FIND VT AT TRAILING EDGE PANELS
C

DO 130 K = 1,2
IF (K :1j I 1
IF K :E: NODTOT
XMID = 0.5 *(x(I) + X1+1
YMID =0.5* (Y(I) + YR+1l
VTANG = +((1.+UG(I)) *COSALF VGf(I)*SINALF+UXl) *COSTHE (I)

+ +(1.+UG(I))*SINALF+VG(I) *COSALF+UY) *SINTHE (I)
+ + OMEGA*(YMID*COSTHE(I) - XMID*SINTHE(I))
AA(K) = - AAN (I, NP1) *SS /WAKE
BB K) = VTANG + AAN(I,NP1)*SS*GAI4MA/WAKE
DO 120 J = 1,NODTOT
AA(K) =AA(K) + AN(I,J - BBN(I,J)*Bl(J)
3BCK) =3(i- 3BN(:,:r*521(J)

C ADD CORE VORTEX CONTRIBUTION
C

IF (M .EQ. 1) GO TO 100
mm1 M- 1
DO 110 N = 1,MM1
BB(K) =BB(K) + CCT(I,N)*CV(N)

110 CONTINUE
100 CONTINUE
130 CONTINUE

C
C SATISFYING KUTTA CONDITION -- SOLVE FOR VORTEX STRENGTH
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C
EE = A~l)*A~l- AA(2'a*.A 2)

-~ = A(2ABB(1 -~ lB AA ()BB2 SS/DT
lii =3B~1l)*B1) -3B(2 )BBk2)+ 2.1*SS*GAI4MA/DT

RADI = 3QRT(FFwFF-EE*GG-)
CJAYK =(-FF - RADI)/EE

C
C CALCULATE SOURCE STRENGTH

0O 160 =1,NODTOT
i60 QK(i) GANLK-BI(:) + B2(11)

.RETIURN
END

CCCCCC"-CC CCCCCCCcCcccCcCCCCCccCCCcc~ccccccccccccccccccccccccccccccccc
C C
C SUBROUTINE NACA45(Z,THIClK, AMBER,BETA) C
c C
C TVALUATE THICKrNESS AND CAMBER C

FOR N'ACA 4- OR 5-DIGIT AIRFOIL C
C

cccccccccc-c CC CC CCC CCCCC CCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCC
SUBROUTINE NACA45(Z ,THICK,CAMBER,BETA)
COMMON /~PAR/ NACA,TAU,EPSMAX,PTMAX
THICK =0.0

Z 1L . .- 10) GO TO 100
lircx 5.-TAU*(.2969*SQRT(Z) - Z*( .126 + Z*(.3537
+ ~- Z*(.2843 - Z*.1015))))

i00 !F CE?'_SMAX .EQ. 0.0) GO TO 130
IF NACA .GT. 9999) GO TO '40
I Z .ZGT. PTMAX) GO TO 110
CAMBER = EPSMAXM/PTMAX/PTMAX*(2.*PTMAX - -*
OCAM'DX = 2L.rE'PSMIAX/?TMAX/PTMAKi*(P;TMAX - Z)
;O TO0120

:10 ~IE = EPSMAX/(:.-?Tl4AX)**2*(:. +Z - 2.*PTMAX)*(l. -Z)

DCAMDX = 2.-':SA/!-PMXN2(TA - Z)
120 BETA = ATAN(DCAMDX)

RETURN
130 CALMBER = 0.0

BETA -0.0

RETURN
140 IF (Z .GT. ?TMAX) GO TO 150

W = z/PTMAX
CAMBER = EPSMAX*W*((W - 3.)*W + 3. - PTMAX)
DCAMDX = EPSMAX*3. 7W*(l. - W)/PTMAX
GO TO 120

150 CAMBER =EPSMAX*(l. - Z)
DCAMDX =- EPSMAX
GO TO 120
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
aC C
*C SUBROUTINE PRESS (SINALF,COSALFOMEGA,UX,UY) C

C C
C COMPUTE UNSTEADY FLOW PRESSURE DISTRIBUTION C
C AND VELOCITY POTENTIAL AT MID-POINTS OF PANELS C

C

SUBROUT::!E ?RESS '5I:ALF, CSALT. OMEGA, UX, JY'
.c!21C0I BOO/ 7FA-McErER:IDc,~22,(202),

1*COST-HE (201)SNH(0)SPN2
COMMON /CPD/ CP(200' ITE21)S.PP
COMMON /NUM/ PI,PI2INV
COMMON /SING/ Q 200) ,GA1IMA,QK(200) ,GAMK
COMMON /WAK/ VYW VXW WAKE,D Y'20 MTCV(0),CY20
COMMON /CORV/ CV(2005,XC( 200),C20, DCVX20,CY20
COMMON /INF1/ AAN (201,201) ,BBN (201 ,201) ,AYNP1 (201) ,BYNP1 (201)COMMON /INF2/ CCN(201,200), CCT(201,200) , CYNP1 (200), CXNP1 (200)
COMMON /POT/ PHIC(0) PHI K(200)
COMMON /GUST/ UG(200 ,VG(200),XGF,UGUST,VGUST
COMMON /EXTV/ UB( (200



WRITE (6,1000)

C FIND TANGENTIAL VELOCITY VT AT MID-POINT OF :-THi PANEL
C

DO 130 I = 1,NODTOT
XMID = 0.5 * (XI) + X (1+1))YMID = 0.5 *(Y(I) +Y (1+1)
DX =((+)-()
DY MDYI1)-()
DIST SQRT(DX*DX+DY*DY)
VSX = (1.+UG(I)) *COSALF-.VG (I) *SINALF + OVEGA'*YM:D + UX
VSY 1 (. U()*SINALF+VG (I) *COSALF - OMEGA*XNID +. uy
VS =VSX'WSX + VSY*VSY
VTANG = (1.U (Il*OSALF..VG (I *SINALF+UX) *COSTHE (I)

+ + ((1.+UG (I)) *SINALF+VG (I)*COSALF+UY)*SIDITHE (I)
+ + OMEGA*(YMID*COSTHE(I) - XM4ID*SINTRE(.T.))
VTFREE = VTANG
VTANG = VTANG + SS*(GAMMA-GAMK)*AAN(I,NP1)/WAKE
DO 120 J = 1,NODTOT
VTANG =VTANG - BBN(I,J)*QK(J) +' AAN(I,J)*GAMK

120 CONTINUE
C
C ADD CORE VORTEX CONTRIBUTION
C

IF (M .E0. 1) GO TO 150
mm1 M -
DO 140 N = 1,M11
VTANG = VTANG + CCT(I,N)*CV(N)

140 CONTINUE
150 CONTINUE

?MX()= (V7TANG-V:F.REE)*DIST
C?(I) VS - VTANG*VTANG
JE(I) = VTANG

130 CONTITNUE
C
C COMPUTE DISTURBANCE POTENTIAL BY LINE INTEGRAL OF VELOCITY FIELD
C
C INTEGRATION FROM UPSTREAM (AT INFINITY) TO THE LEADING EDGE
C

NPHI = 10 * NLOWER
PINK = 0.0
XL - 0.0

*1DO 30 L = 1,NPHI
FRACT = FLOAT(L)/FLOAT(NPHI)
XLP = -10.0 * (1.0 - COS(0 . *PI*FRACT))
DELX = XL -XLP
XMID =0.5* (XL+XLP )*COSALF
YMID = 0.5*R(L+XLP) *SINALF
XL =XLP
VELX =UGUST

C
C ADD CONTRIBUTION OF J-TH PANEL
C

DO 20 J = 1,NP1
DXJ =XMID -X(J)
DXJP = XMID - X ( +1)

= '71 C( D XJD~Y

HTAN = iTAN2(DYJP*DXJ-DXJP*DYJ DXJP4 'lDXJ*DYJP KDYJ)
CALMTJ = -COSALF*COSTHE (J) - SINALF*SINTHE (3)
SALMTJ = SINALF*COSTHE J) + COSALF*SINTHE (J)
APY = P12INV* (FTAN*CALMTJ + FLOG*SALMTJ)
EPY = P12INM*(FLOG*CALMTJ - FTAN*SALMTJ)
IF (J .EQ . NP1) GO TO 40

* VELK = VELX - BPY*QK(J) +GAIK*APY
40 GOTO 20
40 VELX =VELX + SS*APY*(GAMMA-GAMK)/WAKE

20 CONTINUE
C
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C ADD CORE VORTEX CONTRIBUTION
C

IF (M .EQ. 1) GO TO 50
MM 1 =M - 1
DO 60 N = 1,MM1
DX = XMID - XC(N)
DY = YMID - YC(N)
DIST = SQRT(DX*DX+DY*DY)
COSTHN = DY/DIST
SINTHN = DY/DIST
SALMTN = -SINALF*COSTHN + COSALF*SINT[N
CPT = -PI2INV*SALMTN/DIST

60 VELX = VELX + CPT*CV(N)
50 CONTINUE

PINK = PINK + VELX * DELX
30 CONTINUE

C
C COMPUTE DISTURBANCE POTENTIAL AT MID-POINT OF I-TH PANEL"

C
C LOWER SURFACE
C

DO 230 1 = 1,NLOWER
PH = -PINK
DO 240 J = I,NLOWER

240 PM = PH - PHIK(J)
PHIK(I) = PH

230 CONTINUE
DO 270 I = 1 NLOWER-1
PHIK(I) = 0.5*(PHIK(I) + PHIK(I+1))

270 CONTINUE
?-IK(NLOWER) = 0.5*(PHIK(NLCWER) ?INK'

C UPPER SURFACE
C

DO 250 I = NODTOT,NLOWER+I,-l
PH = -PINK
DO 260 J NLOWER+, I

260 PH = PH + PHIK(J)
PHIR(I) = PH

250 CONTINUE
DO 280 I = NODTOT,NLOWER+2,- -1
PHIK(I) = 0.5*(PHIK(I) + PHIK(I-1))

280 CONTINUE
PHIK(NLOWER+l) = 0.5*(PHIK(NLOWER+) + PINK)

C
C COMPUTE CP AT MID POINT OF I-TH PANEL
C

DO 290 I = 1,NODTOT
XMID = .5*(X(I) + X(I+1))
CP(I) = CP(I) - 2.*(PHIK(I)-PHI(I))/DT
WRITE (6,1050) I,XMID,QK(I),GAMK,CP(I),UE(I)

290 CONTINUE
1000 FOR1IAT(/,4X , 'J' 4X 'X(J)1,6X,'Q(J)1,5X,'GAMMA',5X,

+ ICP() ',6X, 'V(J)',
1050 FORMAT(15,6FI0.6)

RETURN

------------- - - - - - ---- "---

C SUBROUTINE SETUP z
C C
C SETUP COORDINATES OF PANEL NODES AND SLOPES OF PANELS C
C COORDINATES ARE READ FROM INPUT DATA FILE UNLESS C
C THE AIRFOIL IS OF NACA XXXX OR NACA 230XX TYPE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SETUP
COMMON /BOD/ IFLAGNLOWER,NUPPER,NODTOT,X(202),Y(202),

+ COSTHE(201),SINTHE(201),SS,NP1,NP2
COMMON /NUM/ PI,PI2INV
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Pt = 3.141592633E

C SET :CCRDINATES OF NODES ON BODY SURFACE

:F k(IFLAG .NE. 3) GO TO0 10
NPOINT =NLOWER
SIGN = -.
Ns""'RT =
00O :0 MTSURF
00 -30 Nl = :I )IPOIN;T
FRACT = LOAT(N1-1 )'FLOATVNPOINT)
z !3*5(1. - COSkP*FRACT))
I NSTART +N
CALL 3ODY(ZSIGN,X(.I),Y(I))

'00 CONTINUE
NPOINT1 = NUPPER

NST AR = :ILOWER
110 CONTINUE

NODTOT = NLOWER + NUPPER
X (NODTOT+', = X ~1)
Y (NODTOT+l) = 7\1)

'0 NOOTOT = ':ILOWER - NJU??ER
READ '_30 1 ~':>:=:,:q'ODTOT- 1)
WRI-TE %0 Y(,,iOTT1
RE.%D $ 5~ (:1NOD0T+1)-
WRITE k6,301) Y(i),I=I,NODTOT+l)

501 FORAT 6'06
10 lp I :TOCTOT

* NP2 = :ODTO"'

7 E: SLOPES OF ?ANELS AND CALCULATE AIRFOIL PERIMETER

SS =0.0
DO 200 I1 1,NODTOT
DX = XI+1) X(I)
DY = Y(14-1 - Y( I)
DIST = SC-RT(DX*DX +DY*DY)
55 =S'3+ DIST
SINTHE (I) = DY/DIST
COSTHE I) = DX/DIST

200 CONTINUE
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE TEWAK (SINALF,COSALF) C
C C
C COMPUTE WAKE ELEMENT AT THE TRAILING EDGE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE TEWAK (SINALF,COSALF)
COMMON IBOD/ IFLAG,NLOWER,NUPPER,NODTOT,X(202),Y(202),

4- 'OsTHE (201),S:-NTHE ( 201) SSNP1, NP2
IC!*C cF/ A 0 11 :rI -'EO S
I , N s1G ,' '20C 3AI-MA K ( Z 0 O!AH-K

COMMON /CORV/ CV(200),XC(200),YC(200),M,TD,CCVX(200),CCVY(200)
COMMON /INF1/ AAN (201,201) ,BBN (201,201) AYNP1 (201) ,BYNP1 (201)COMMON IINF2I CCN(201,200), CCT(201,200) ,CYNF1 (200) ,CXNP1 (200)
COMMON /GUST/ UG (20) ,VG(200) ,XGF,UGUST,VGUST
XMID = 0.5 * (X(NP1) + XNP2))
YMID = 05 * (YNP1) + Y(NP2))

NUGW = 0.0
VGW = 0.0
XG = XMID*COSALF + YMID*SINALF
IF (XG .GT. XGF) GO TO 10
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UGW =UGUST
*7GIV VGUST

10 ITYWK =(1.+UGW)*SINALF+VGW*COSALF
VXWK = l. . UGW)*COSALF-VGW*SINALF
DO 170 J -= 1.NODTOT
VYWK =VYWK +s AYNP1(J)*OK(J + Y (J)*GAMK

120 7XK =VXWK - BYNPJ.(J)xQ (J) +AYNPP1J GA
C

C "iDD CORE VORTEX CONTRIBUTION
C

:(M .EQ. 1) GO TO 140

DO 130 N =1,MM1
VYWK =VYWK + CYNP1(N)*CV (N)

130 VXWK =VXWK + CXNP1(N)'*CV(N)
140 CONTINUE

RE URN
.XND

ccCccc ̂C^cCcccCCC IcCccccc--CcCCcccmCCCcccccccccCccccccccCCCcCCcccccCccc
C C
C SUBROUTINE VELDIS(SINALF,COSALF) C
C C
C COMPUTE STEAY FLOW PRESSURE DISTRIBUTION C

;ND VELOCATY ?OTENTIAL AT MID-POINTS OF PANELS C
C

-C-C C C "CC Cccccc-CCC CC I-CCCCCCCCC"CCCC CCCI CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE VELDIS (SINALF, COSAL-F)
CO,"l0N "BOD/ FA-G,NLOWER,NUPPER,NODTOT,X(202) ,Y(202),

+ COSTHE(201) ,SINTHE(201) ,sS,NP1,NP2
C0OMMON 'COF/ A(201 .211) ,KUTTA
:01MMON /C?:) CP(200)
:0MMON i/UMI ?!,P2NV
COMMON ,SING/ 0(200) GAMMA ,3K(200) ,GAMK
COMMON /?OT/'?RI'200 ,?HIK( 200)
COMMON /GUST/ UG 200) VG(200),XGF,UGUST,VGUST
COMMON /EXTV/ UER(200
WRITE (6,1000)

C RETRIEVE SOLUTION FROM A-MATRIX
C

Do 50 I = 1,NODTOT
s0 Q(I) =A(I,KUTTA+1)

GAMMA =A(KUTTA,KUTTA+1)

C FIND VT AND CP AT MID-POINT OF I-TH PANEL
C

DO 130 I = 1,NODTOT
XNID = .5*(XI)+X(1)
YMID = *5* (Y I) + Y (1+1))
VTANG = COSALF*COSTHE(I) + SINALF*SINTHE(I)
VTFREE = VTANG

C
C ADD CONTRIBUTION OF J-TH PANEL
C

DO 120 J = 1,NODTOT
=rO 0.0

10 ::0I -

DXJP = XMID - X (J+1)
DYJ = YMID - YJ)
DYJP = YMID - Y(J+1)
FLOG =5*ALOG( (DXJP*DXJP+DYJP*DYJP)/(DXJ*DXJ+DYJ*DYJ))

10 FTAN = ATAN2(DYJP*DXJ-DXJP*DYJ, DXJP*DXJ+DYJP*DYJ)
10CTIMTJ = SHEI) *COSTHE(J) + SINTHE(I )*SINTHE(J)

STIMTJ = SINTHE (I)*COSTHE(J) - COSTHE (t)*SINTHE (J)
AA = P12INV*( FTAN*CTIMTJ + FLOG*ST IMTJ)
B = P12IDTV* (FLOG*CTIMTJ - FTAN*STIMTJ)
VTANG = VTANG - B*Q(J) +GAMMA*AA

120 CONTINUE
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CPI = 1.0 - VTANG*VTANG
tIE (I = VTANG

C WRITE (6,1050) I,XQID,Q(I),GAMM.A,CP(I),UE(I)
CINTASE-PFRDSUBNEPTNILCLUAJO

C
DX = XIl-0
DY = 0+
DIST = S RRT(DX*DX+DY DY)
?HIl(I) =(XTANG-VTFREE)*DIST

130 CONTINUE
C
C COMPUTE DISTURBANCE POTENTIAL BY LINE INTEGRAL OF VELOCITY FIELD
C
C INTEGRATION FROM UPSTREAM (AT INFINITY) TO THE LEADING EDGE
C

NPHI = 10 * NLOWER
PIN = 0.0
XL = 0.0
DO 30 L = 1,NPHI
FRACT = FLOAT(L)/LA(PI
XLP = -10.0 *(1.0 - COS(0*PFRC)
DELX = XL - XLP
XMiD = 0. 5* XL+XLP )*COSALF
YMID = 0.5*\XL+XLP )*SINALF
XL =XLP
VELX = UGUST

C
C ADD CONTRIBUTION OF J-TH PANEL
C

00 20 J = 1,NODTOT
DXJ = MID -X J)
DXJP = XMID - X (J+1)
DYJ =YMID - YJ)
DYJP = YMID - Y (J+1)
FLOG = .5*ALOG ( DXJP*DXJP+DYJP*DYJP)/ (DXJ*DXJ+DYJ*DYJ))
FTAN = ATANZ(DYJ*DJ XP*DYJDXJPIDX JDYJP *DYJ)
CALMTJ = -COSALF*COSTHE (J) - SINALF*SINTH
SALMTJ = -SINALF*COSTME (J) + COSALF*SINTHE J 3
APY = P12INV* (FTAN*CALMTJ + FLOG*SALMTJ)
BPY = P12INV*R(LOG*CALMTJ - FTAN*SALMTJ)

20 VELX = VELX - BPY*Q(J) +GAMHA*APY
20 CONTINUE

PIN = PIN +VELX* DELX
30 CONTINUE

C
C COMPUTE DISTURBANCE POTENTIAL AT MID-POINT OF I-TM PANEL
C
C LOWER SURFACE
C

DO 230 I = 1,NLOWER
PH = -PIN
DO 240 J = I,NLOWER

240 PH =PH - PHI(J)
PHI(I) =PH

230 CONTINUE-=1 LCE-
DO 270 1NOE-

= .k?HI ( 3 2c ? H I(:+i
270 ZONT::IUE

PHI(NLOWER) = 0.5*(PHI(NLOWER) + PIN)
C
C UPPER SURFACE
C

DO 250 I = NODTOT,NLOWER+1,-l
PH = -PIN
DO 260 J = NLOWER+1,I

260 PH =PH + PHI(J)
PHIJI) =PH

250 CONTINUE
DO 280 I = NODTOT,NLOWER+2,-l
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PHI(I = O.5*(PHI(I) + PHI(I-1))
280 CONTINUE

PHI(NLOWER+l) = 0.S* (PHI(NLOWER+l) + PIN)
1000 FOP1MAT(/ 4X,IJ' 4X,'X(J) ',6X,'Q(J)',SX,'GAMMA',5X,

+ CP(J) ,X, 'v J)1 I
1050 FORMAT(I5,5F 0. 6

RETURN
END
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APPENDIX B
EXAMPLE INPUT DATA FOR PROGRAM U2DIIF

'1

THIS :S AN EXAMPLE OUTPUT DATA OBTAINABLE FROM PROGRAM U2DIIF
AIRFOIL : MISES 8.4% THICKNESS (COORDINATES ARE INPUT BY USER)
PANEL NUMBER : NLOWER = 25 , NUPPER = 25
AIRFOIL MOTION : MODIFIED RAMP AOA CHANGE ABOUT MID CHORD
INITIAL AOA : 2.5 DEGREES
FINAL AOA : 7.5 DEGREES
AOA RISE TIME : 1.5 CHORD LENGTHS
COMPUTATION TIME STEP : 0.05 DURING TRANSIENT MOTION, INCREASES

PROGRESSIVELY AFTER FINAL AOA IS REACHED********* ***************************4*********5******************7*

01 25 25
1.000000 0.994858 0.980866 0.958884 0.929536 0.893455
0.851308 0.803815 0.751753 0.695948 0.637271 0.576620
0.514913 0.453098 0.392084 0.332794 0.276105 0.222865
0.173361 0.129819 0.091393 0.059146 0.033560 0.015010
0.003767 0.000000 0.003767 0.015008 0.033560 0.059146
0.091393 0.129819 0.173861 0.222865 0.276105 0.332791
0.392082 0.453095 0.514915 0.576617 0.637266 0.695946
0.751750 0.803815 0.851308 0.393455 0.929536 0.958884
0.980866 0.994858 1.000000
0.000000 -0.000782 -0.002784 -0.005721 -0.009351 -0.013459

-0.017837 -0.022285 -0.026618 -0.030671 -0.034289 -0.037341
-0.039712 -0.041314 -0.042083 -0.041979 -0.040979 -0.039096
-0.036360 -0.032820 -0.028555 -0.023651 -0.018220 -0.012379
-0.006259 0.000000 0.006259 0.012379 0.018220 0.023651
0.028555 0.032820 0.036360 0.039096 0.040979 0.041979
0.042083 0.041314 0.039712 0.037341 0.034289 0.030671
0.026618 0.022285 0.017837 0.013459 0.009351 0.005721
0.002784 0.000782 0.000000
2.50000 5.000000 1.5 0.0 0.5 0.0 0.00

0.000000 0.000000 0.000000
2.000000 0.050000 0.0001 0.000000
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APPENDIX C
EXAMPLE OUTPUT DATA FROM PROGRAM U2DIIF

DATA READ FROM FILE CODE 1

- *******1"********2"******************4**************************7*

THIS IS AN EXAMPLE OUTPUT DATA OBTAINABLE FROM PROGRAM U2DIIF
AIRFOIL : MISES 8.4% THICKNESS (COORDINATES ARE INPUT BY USER)
PANEL NUMBER : NLOWER = 25 , NUPPER = 25
AIRFOIL MOTION : MODIFIED RAMP AOA CHANGE ABOUT MID CHORD
INITIAL AOA : 2.5 DEGREES
FINAL AOA : 7.5 DEGREES
AOA RISE TIME : 1.5 CHORD LENGTHS
COMPUTATION TIME STEP : 0.05 DURING TRANSIENT MOTION, INCREASES

PROGRESSIVELY AFTER FINAL AOA IS REACHED

1 25 25
1.000000 0.994858 0.980866 0.958884 0.929536 0.893455
0.351308 0.803815 0.751753 0.695948 0.637271 0.576620
3.614918 0.453098 0.392084 0.332794 0.276105 0.222865
0.17361 0.129819 0.091393 0.059146 0.033560 0.015010
0.003767 0.000000 0.003767 0.015008 0.033560 0.059146
0.091393 0.29819 0.173861 0.222865 0.276105 0.332791
0.392082 0.453095 0.514915 0.576617 0.637266 0.695946
0.751750 0.803815 0.851308 0.893455 0.929536 0.958884
0.980866 0.994858 1.000000
0.000000 -0.000782 -0.002784 -0.005721 -0.009351 -0.013459

-0.017837 -0.022285 -0.026618 -0.030671 -0.034289 -0.037341
-0.039712 -0.041314 -0.042083 -0.041979 -0.040979 -0.039096
-0.036360 -0.032820 -0.028555 -0.023651 -0.018220 -0.012379
-0.006259 0.000000 0.006259 0.012379 0.018220 0.023651
0.028555 0.032820 0.036360 0.039096 0.040979 0.041979
0.042083 0.041314 0.039712 0.037341 0.034289 0.030671
0.026618 0.022285 0.017837 0.013459 0.009351 0.005721
0.002784 0.000782 0.000000
2.500000 5.000000 1.500000 0.000000 0.500000 0.000000 0.000000
0.000000 0.000000 0.000000
2.000000 0.050000 0.000100 0.000000

AIRFOIL PERIMETER LENGTH = 2.018599

STEADY FLOW SOLUTION AT ALPHA = 2.500000

k 1) (J GA111A CP(J) I(J
. ).997429 0.155723 .074003 0.316305 -0.326859
2 0.987862 0.356105 0.074003 0.206074 -0.891025
3 0.969875 0.365026 0.074003 0.133790 -0.930704
4 0.944210 0.378836 0.074003 0.082276 -0.957979
5 0.911495 0.394973 0.074003 0.043033 -0.978247
6 0.872381 0.412926 0.074003 0.012034 -0.993965
7 0.827561 0.432568 0.074003 -0.012724 -1.006342
8 0.777784 0.453710 0.074003 -0.032414 -1.016078
9 0.723850 0.476112 0.074003 -0.048010 -1.023724

10 0.666609 0.500047 0.074003 -0.059905 -1.029517
11 0.606945 0.525455 0.074003 -0.068405 -1.033637
12 0.545769 0.552654 0.074003 -0.073563 -1.036129
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13 0.484008 0.581715 0.074003 -0.075309 -1.036971
14 0.422591 0.612882 0.074003 -0.073531 -1.036114
15 0.362439 0.646480 0.074003 -0.067928 -1.033406
16 0.304449 0.683297 0.074003 -0.057668 -1.028430
17 0.249485 0.723595 0.074003 -0.041891 -1.020731
18 0.198363 0.768523 0.074003 -0.019114 -1.009512
19 0.151840 0.819732 0.074003 0.013374 -0.993290
20 0.110606 0.879132 0.074003 0.059669 -0.969707
21 0.075269 0.951277 0.074003 0.127774 -0.933931
22 0.046353 1.043426 0.074003 0.232984 -0.875795
23 0.024285 1.172784 0.074003 0.409236 -0.768612
24 0.009388 1.380641 0.074003 0.727179 -0.522323
25 0.001884 1.653644 0.074003 0.945112 0.234282
26 0.001884 0.545367 0.074003 -0.815326 1.347341
27 0.009387 -0.275210 0.074003 -1.084184 1.443670
28 0.024284 -0.497235 0.074003 -0.872601 1.368430
29 0.046353 -0.580394 0.074003 -0.723499 1.312821
30 0.075269 -0.618032 0.074003 -0.624167 1.274428
31 0.110606 -0.636699 0.074003 -0.552954 1.246176
32 0.151840 -0.645594 0.074003 -0.498371 1.224080
33 0.198363 -0.649755 0.074003 -0.453794 1.205734
34 0.249485 -0.650971 0.074003 -0.415592 1.189787
35 0.304448 -0.650596 0.074003 -0.381557 1.175397
36 0.362436 -0.649624 0.074003 -0.349957 1.161877
37 0.422588 -0.648020 0.074003 -0.319875 1.148858
38 0.484005 -0.646281 0.074003 -0.290579 1.136037
39 0.545766 -0.644572 0.074003 -0.261352 1.123099
40 0.606941 -0.642990 0.074003 -0.231604 1.109776
41 0.666606 -0.641396 0.074003 -0.200941 1.095875
42 0.723848 -0.639980 0.074003 -0.168763 1.081094
43 0.777782 -0.638504 0.074003 -0.134640 1.065195
44 0.827561 -0.637214 0.074003 -0.097676 1.047701
45 0.872381 -0.635880 0.074003 -0.056864 1.028039
46 0.911495 -0.634260 0.074003 -0.010900 1.005436
47 0.944210 -0.632196 0.074003 0.042413 0.978564
48 0.969875 -0.629793 0.074003 0.107609 0.944665
49 0.987862 -0.625960 0.074003 0.193062 0.898297
50 0.997429 -0.619834 0.074003 0.316307 0.826858

CD = 0.000829 CL = 0.303076 CM = -0.080325

*** BEGIN UNSTEADY FLOW SOLUTION ****

TIME STEP TK = 0.050000 TK - TKM1 = 0.050000

ALPHA(T) = 2.516295 OMEGA(T) = -0.011248
UJ(T) = 0.000000 V(T) = -0.005624

NITR VxW VYW WAKE THETA GAMMNA

0 0.999048 0.043619 0.050000 0.043633 0.740032E-01
1 0.907832 0.005991 0.045393 0.006600 0.744799E-01
2 0.904138 0.007297 0.045208 0.008070 0.744662E-01
3 0.903985 0.007241 0.045201 0.008010 0.744652E-01

CONVERGED SOLUTION OBTAINED AFTER NITR = 3
J X(J) Q(J) GAMMA CP(J) V(J)
1 0.997429 0.435837 0.074466 0.299470 -0.838202
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2 0.987862 0.422852 0.074466 0.196120 -0.899569
3 0.969875 0.421798 0.074466 0.132077 -0.936976
4 0.944210 0.427256 0.074466 0.088439 -0.962415
5 0.911495 0.435974 0.074466 0.055859 -0.981131
6 0.872381 0.447181 0.074466 0.029822 -0.995676
7 0.827561 0.460598 0.074466 0.008149 -1.007037
8 0.777784 0.475913 0.074466 -0.010442 -1.015962
9 0.723850 0.492830 0.074466 -0.026773 -1.022942

10 0.666609 0.511571 0.074466 -0.041132 -I.3J83
11 0.606945 0.532044 0.074466 -0.053494 -1.03200
12 0.545769 0.554564 0.074466 -0.063581 -1.034262
13 0.484008 0.579201 0.074466 -0.070990 -1.035013
14 0.422591 0.606206 0.074466 -0.075185 -1.034204
15 0.362439 0.635915 0.074466 -0.075487 -1.031672
16 0.304449 0.669133 0.074466 -0.070722 -1.027008
17 0.249485 0.706140 0.074466 -0.059745 -1.01977t
18 0.198363 0.748100 0.074466 -0.040826 -1.009171
19 0.151840 0.796683 0.074466 -0.011154 -0.993762
20 0.110606 0.853825 0.074466 0.033396 -0.971231
21 0.075269 0.924099 0.074466 0.100715 -0.936853
22 0.046353 1.014820 0.074466 0.205876 -0.880676
23 0.024285 1.143358 0.074466 0.382654 -0.776542
24 0.009388 1.351849 0.074466 0.703606 -0.535871
25 0.001884 1.634712 0.074466 0.952740 0.209596
26 0.001884 0.564272 0.074466 -0.746972 1.322641
27 0.009387 -0.246433 0.074466 -1.037466 1.430099
28 0.024284 -0.467818 0.074466 -0.838061 1.360476
29 0.046353 -0.551795 0.074466 -0.693563 1.307915
30 0.075269 -0.590860 0.074466 -0.596473 1.271481
31 0.110606 -0.611392 0.074466 -0.527117 1.244626
32 0.151840 -0.622549 0.074466 -0.474313 1.2r3580
33 0.198363 -0.629333 0.074466 -0.433321 1.206047
34 0.249485 -0.633515 0.074466 -0.399064 1.190716
35 0.304448 -0.636433 0.074466 -0.369826 1.176793
36 0.362436 -0.639059 0.074466 -0.343641 1.163536
37 0.422588 -0.641343 0.074466 -0.319346 1.150745
38 0.484005 -0.643768 0.074466 -0.295850 1.137963
39 0.545766 -0.646483 0.074466 -0.272088 1.124936
40 0.606941 -0.649578 0.074466 -0.247068 1.111386
41 0.666606 -0.652918 0.074466 -0.220048 1.097122
42 0.723848 -0.656699 0.074466 -0.190134 1.081849
43 0.777782 -0.660707 0.074466 -0.156552 1.065285

* 44 0.827561 -0.665236 0.074466 -0.118313 1.046980
45 0.872381 -0.670135 0.074466 -0.074279 1.026307
46 0.911495 -0.675261 0.074466 -0.023233 1.002476
47 0.944210 -0.680614 0.074466 0.036802 0.974108
48 0.969875 -0.686543 0.074466 0.109850 0.938386
49 0.987862 -0.692719 0.074466 0.203356 0.889792
50 0.997429 -0.699982 0.074466 0.333160 0.815602

CD = 0.001539 CL = 0.302054 CM = -0.088450

TRAILING VORTICES DATA

M X(M) Y(M) CIRC
1 .,22599 O.000131 -0.000933

TIME STEP TK = 0.749999 TK - TKM1 = 0.050000

ALPHA(T) = 4.999996 OMEGA(T) = -0.087266
U(T) 0.000000 V(T) = -0.043633

NITR VXW VYW WAKE THETA GAMMA
0 0.905684 -0.000916 0.045284 -0.001012 0.103235E+00
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1 0.905735 -0.000649 0.045287 -0.000717 0.106563E+00

:ONVERGED SCLUIJON "'BTAINED AFTER NITR I
3 X(J) (J) GAMMA C(J) V(J)
1 0.997429 :.115997 0.106565 0.311649 -0.908159
2 0.987862 i.060311 0.106565 0.221106 -0.957033

0.969875 1.031.653 0.10656- 0.170306 -0.983709
0.944210 1.013085 3.106565 ).141163 -0.998976

5 0.911495 3.998141 0.106365 0.123949 -1.008098
6 0.372331 0.985265 0.106565 0.114073 -1.01.3416
7 0.327561 0.974241 0.106565 0.109016 -1.016142
8 0.777784 0.964993 0.106565 0.107136 -1.017013
9 0.723850 0.957451 0.106565 0.107130 -1.016594

10 0.666609 0.952120 0.106565 0.108453 -1.015089
:" 3.506945 0.949235 0.106565 0-110657 -1.012669
12 0.545769 0.949393 0.106565 0.113665 -1.009317
13 3.484008 3.952960 0.106565 0.117540 -1.004971
14 0.422591 0.960451 0.106565 0.122480 -0.999505
15 0.362439 0.972455 0.106565 0.128967 -0.992654
16 0.304449 0.990059 0.106565 0.138078 -0.983855
17 0.249485 1.013807 0.106565 0.150962 -0.972486
18 0.198363 1.045081 0.106565 0.169616 -0.957451
19 0.151840 :.085785 0.106565 0.197364 -0.936848

0: .1:0606 ".133034 0.106565 0.'39070 -0.907675
2i 0.375z69 1.206453 0.106565 0.303822 -0.863894
22 0.046353 1.298127 0.106565 0.407818 -0.793054
Z' 0.324285 i.428849 0.106565 0.583190 -0.663132
24 0.009388 1.631804 0.106565 0.872165 -0.369686
25 0.001384 1.319807 0.106565 0.765241 0.485826
26 0.301884 3.373179 0.106565 -1.559307 1.595828
" 0.009337 -3.529374 0.106565 -1.564167 1.590937

28 0.)24234 -0.755145 0.106565 -1.202155 1.468068
29 0.046353 -0.336350 0.106565 -0.991312 1.389589
30 0.075269 -0.874103 0.106565 -0.864650 1.338450
31 0.110606 -0.896239 0.106565 -0.781035 1.302194
32 0.151340 -0.912096 0.106565 -0.721021 1.274529
33 0.198363 -0.926607 0.106565 -0.674005 1.251843
34 0.249485 -0.941343 0.106565 -0.634257 1.232132
35 0.304448 -0.957406 0.106565 -0.598321 1.214148
36 0.362436 -0.975544 0.106565 -0.563539 1.196886
37 0.422588 -0.995441 0.106565 -0.528592 1.179831
38 0.484005 -1.017302 0.106565 -0.492391 1.162518
39 0.545766 -1.041010 0.106565 -0.454043 1.144540
40 0.606941 -1.066387 0.106565 -0.412924 1.125555
41 0.666606 -1.093023 0.106565 -0.368740 1.105335
42 0.723848 -1.120818 0.106565 -0.321026 1.083543
43 0.777782 -1.149241 0.106565 -0.269645 1.059939
44 0.827561 -1.178310 0.106565 -0.213999 1.034027
45 0.872381 -1.207644 0.106565 -0.153563 1.005269
46 0.911495 -1.236895 0.106565 -0.087684 0.972965
47 0.944210 -1.265976 0.106565 -0.014749 0.935775
48 0.969875 -1.296105 0.106565 0.069103 0.890819
49 0.987862 -1.330154 0.106565 0.171240 0.832327
50 0.997429 -1.380203 0.106565 0.308161 0.746084

=3.J3:367 = 3.645308 CM = 0.224298

TRAILING VORTICES DATA

M X(M) Y(M) CIRC
1 1.700760 0.077052 -0.C00933
2 1.651289 0.072156 -0.001625
3 1.602002 0.066331 -0.002229
4 1.552845 0.060031 -0.002784
5 1.503779 0.053471 -0.003304
6 1.454797 0.046788 -0.003797
7 1.405895 0.040107 -0.004256
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8 1.357057 0.033554 -0.004687
9 1.203305 !.327216 -0.305100

i0 1.259669 0.32159 -. 005481
i! .111780.315541 -0.005801

12 1.162916 3.010481 -0.006100
13 1.115048 0.006079 -0.006349
14 1.567918 0.002406 -0.006559
.5 1.022643 -0.000016 -0.006720

TIME STEP TK = 1.449992 TK - TKM1 = 0.050000

ALHA(T) = 7.483698 OMEGA(T) = -0.011249
U(:) 0.000000 V(T) = -0.005625

N:R VlW 7YW WAKE THETA GAMMA
0 0.901699 0.009872 0.045088 0.010948 0.145377E+00
1 0.901200 0.011028 0.045063 0.012236 0.146997E+00

ONVERGED sOLUT0N OBTAINED AFTER NITR = 1

1 0.997429 1.101898 0.146996 0.332408 -0.864078
2 .937862 1.099609 0.146996 0.228004 -0.921188
3 0.969875 1.116333 0.146996 0.160643 -0.955077
4 0.9442:0 1.140985 0.146996 0.114868 -0.976579

. 911495 " .'68619 0.146996 0.032627 -0.990894
5 0.3723i3 1.197904 0.146996 0.060528 -1.000257
7 '.3'561 1.228671 0.146996 0.046710 -1.005878
3 0.757734 1.260826 0.146996 0.039936 -1.008490
9 0.723850 1.294203 0.146996 0.039112 -1.008660

10 0.666609 1.329222 0.146996 0.043766 -1.006560
11 0.606945 1.366027 0.146996 0.053332 -1.002352
:2 0.545759 1.405159 0.146996 0.067653 -0.99594713 0.484008 1.446882 0.146996 0.086578 -0.987214

14 0.422591 1.491619 0.146996 0.110103 -0.975912
15 0.362439 1.539856 0.146996 0.138557 -0.961606
16 0.304449 1.592619 0.146996 0.172964 -0.943442
17 0.249485 1.650390 0.146996 0.214399 -0.920465
18 0.198363 1.714437 0.146996 0.265094 -0.890942
19 0.151840 1.786607 0.146996 0.328746 -0.851951
20 0.110606 1.868882 0.146996 0.410545 -0.798852
21 0.075269 1.965495 0.146996 0.519597 -0.722328
22 0.046353 2.082446 0.146996 0.668455 -0.603478
23 0.024285 2.230950 0.146996 0.866926 -0.394782
24 0.009388 2.419835 0.146996 1.009466 0.050859
25 0.001884 2.339782 0.146996 -0.471799 1.214887
26 0.001884 -0.156346 0.146996 -4.389847 2.320095
27 0.009387 -1.322127 0.146996 -3.033496 2.003043
28 0.024284 -1.560176 0.146996 -2.015200 1.727204
29 0.046353 -1.622657 0.146996 -1.505832 1.569752
30 3.275269 -1.614560 0.146996 -1.212790 1.470549

-1.S23132 3.146996 -. 2304 1.401554
,2 j53_:340 -.. 12626 ).146996 -3.385616 ".350007

3 8362 -1.39642 .146996 -0.730655 1.309004
34 0.249485 -1.578180 0.146996 -0.695048 1.274895
35 0.304448 -1.560042 0.146996 -0.621833 1.245407
36 0.362436 -1.542861 0.146996 -0.556431 1.218916
37 0.422588 -1.526391 0.146996 -0.496616 1.194569
38 0.484005 -1.510876 0.146996 -0.440592 1.171595
39 0.545766 -1.496317 0.146996 -0.387199 1.149437
40 0.606941 -1.482638 0.146996 -0.335611 1.127617
41 0.666606 -1.469497 0.146996 -0.285518 1.105863
42 0.723848 -1.456874 0.146996 -0.236273 1.083745
43 0.777782 -1.444335 0.146996 -0.187542 1.060991
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44 0.827561 -1.431955 0.146996 -0.138458 1.037087
45 0.872381 -1.419472 0.146996 -0.088061 1.011468
46 0.911495 -1.406547 0.146996 -0.035055 0.983411
47 0.944210 -1.393024 0.146996 0.023027 0.951546
48 0.969875 -1.379868 0.146996 0.091342 0.912885
49 0.987862 -1.368515 0.146996 0.178655 0.861777
50 0.997429 -1.365097 0.146996 0.303827 0.784388

CD = 0.030956 CL = 0.713821 CM = -0.190685

TRAILING VORTICES DATA

M X(M) Y(M) CIRC
1 2.383780 0.232008 -0.000933
2 2.333846 0.225080 -0.001625
3 2.284404 0.216393 -0.002229
4 2.235273 0.206695 -0.002784
5 2.186347 0.196301 -0.003304
6 2.137600 0.185376 -0.003797
7 2.089004 0.174067 -0.004256
8 2.040442 0.162550 -0.004687
9 1.991957 0.150853 -0.005100

10 1.943572 0.138989 -0.005481
11 1.895155 0.127193 -0.005801
12 1.846658 0.115584 -0.006100
13 1.798126 0.104170 -0.006349
14 1.749496 0.093078 -0.006559
15 1.700793 0.082359 -0.006720
16 1.651988 0.072087 -0.006839
17 1.603077 0.062348 -0.006896
18 1.554079 0.053196 -0.006916
19 1.505019 0.044648 -0.006885
20 1.455917 0.036758 -0.006795
21 1.406791 0.029591 -0.006648
22 1.357685 0.023172 -0.006443
23 1.308651 0.017529 -0.006177
24 1.259734 0.012684 -0.005852
25 1.211021 0.008642 -0.005465
26 1.162620 0.005401 -0.005014
27 1.114706 0.002948 -0.004498
28 1.067624 0.001210 -0.003917
29 1.022530 0.000276 -0.003269

TIME STEP TK = 1.999990 TK - TKM1 = 0.200000

ALPHA(T) = 7.500000 OMEGA(T) = 0.000000
U(T) = 0.000000 V(T) = 0.000000

NITR VXW VYW WAKE THETA GAMMA
0 0.939783 0.026143 0.188029 0.027811 0.156187E+00
1 0.948367 0.030228 0.139770 0.031863 0.160749E+00
S3.348647 0.330031 3.139825 3.331699 j.160765E+00

CONVERGED SOLUTION OBTAINED AFTER NITR = 2
J X(J) Q(J) GAMMA CP(J) V(J)
1 0.997429 1.116135 0.160766 0.320772 -0.851401
2 0.987862 1.110748 0.160766 0.221351 -0.907726
3 0.969875 1.126034 0.160766 0.158555 -0.941336
4 0.944210 1.150497 0.160766 0.116479 -0.962935
5 0.911495 1.179177 0.160766 0.086724 -0.977640
6 0.872381 1.210700 0.160766 0.065709 -0.987588
7 0.827561 1.244766 0.160766 0.051593 -0.993866
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8 0.777784 1.281128 0.160766 0.043212 -0.997146
9 0.723850 1.319423 0.160766 0.039694 -0.997912

10 0.666609 1.359948 0.160766 0.040813 -0.996296
11 0.606945 1.402723 0.160766 0.046325 -0.992422
12 0.545769 1.448176 0.160766 0.056472 -0.986157
13 0.484008 1.496484 0.160766 0.071440 -0.977368
14 0.422591 1.547997 0.160766 0.091673 -0.965767
15 0.362439 1.603142 0.160766 0.117858 -0.950894
16 0.304449 1.662897 0.160766 0.151404 -0.931843
17 0.249485 1.727721 0.160766 0.193674 -0.907603
18 0.198363 1.798850 0.160766 0.247145 -0.376338
19 0.151840 1.878118 0.160766 0.315652 -0.834967
20 0.110606 1.967481 0.160766 0.404369 -0.778575
21 0.075269 2.071099 0.160766 0.522025 -0.697329
22 0.046353 2.194821 0.160766 0.679683 -0.571292
23 0.024285 2.349161 0.160766 0.881018 -0.350465
24 0.009388 2.539111 0.160766 0.987480 0.119060
25 0.001884 2.420488 0.160766 -0.772858 1.331881
26 0.001884 -0.236994 0.160766 -4.940613 2.437122
27 0.009387 -1.441366 0.160766 -3.294956 2.071290
28 0.024284 -1.678374 0.160766 -2.145366 1.771569
29 0.046353 -1.735029 0.160766 -1.575494 1.601988
30 0.075269 -1.740161 0.160766 -1.248166 1.495590
31 0.110606 -1.726694 0.160766 -1.035354 1.421868
32 0.151840 -1.705142 0.160766 -0.884674 1.367020
33 0.198363 -1.680851 0.160766 -0.770207 1.323621
34 0.249485 -1.655530 0.160766 -0.678837 1.287744
35 0.304448 -1.630341 0.160766 -0.602871 1.256978
36 0.362436 -1.606176 0.160766 -0.537036 1.229567
37 0.422588 -1.582802 0.160766 -0.478581 1.204600
38 0.484005 -1.560513 0.160766 -0.425234 1.131278
39 0.545766 -1.539373 0.160766 -0.375344 1.158993
40 0.606941 -1.519384 0.160766 -0.327563 1.137220
41 0.666606 -1.500277 0.160766 -0.281143 1.115668
42 0.723848 -1.482141 0.160766 -0.235015 1.093871
43 0.777782 -1.464664 0.160766 -0.188536 1.071527
44 0.827561 -1.448072 0.160766 -0.140512 1.048044
45 0.872381 -1.432248 0.160766 -0.089803 1.022803
46 0.911495 -1.417014 0.160766 -0.035089 0.995022
47 0.944210 -1.402392 0.160766 0.026050 0.963238
48 0.969875 -1.389331 0.160766 0.098463 0.924430
49 0.987862 -1.379196 0.160766 0.190332 0.873000
50 0.997429 -1.379105 0.160766 0.319847 0.795184

CD = 0.022037 CL = 0.709635 CM = -0.185327

TRAILING VORTICES DATA
M X(M) Y(M) CIRC
1 2.923984 0.318366 -0.000933
2 2.873369 0.311788 -0.001625
3 2.823534 0.302817 -0.002229
4 2.774192 0.292439 -0.002784
5 2.725182 0.281064 -0.003304
6 2.676492 0.268880 -0.003797
7 2.628086 0.256054 -0.004256
.3 2.379755 0.242831 -0.004687
9 2.331597 0.229197 -0.005100

10 2.483748 0.215114 -0.005481
11 2.435886 0.200928 -0.005801
12 2.387918 0.186791 -0.006100
13 2.339993 0.172653 -0.006349
14 2.291922 0.158710 -0.006559
15 2.243772 0.144992 -0.006720
16 2.195477 0.131596 -0.006839
17 2.146968 0.118650 -0.006896
18 2.098253 0.106217 -0.006916
19 2.049394 0.094288 -0.006885
20 2.000362 0.082951 -0.006795
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21 1.951119 0.072314 -0.006648
22 1.901708 0.06241.2 -0.006443
23 1.352145 0.053298 -0.006177
24 76.802427 0.045045 -0.005852
25 1.752599 0.03767? -0.005465
26 1.702674 0.031252 -0.005014
27 1.652678 0.025824 -0.004498
28 1.602603 0.021481 -0.003917

*29 :.552431 0.018290 -0.003269
30 1.301920 0.011193 -0.002553
31 1.430588 0.016109 -0.002761
32 1.378677 0.012411 -0.005504
33 1.258439 0.007189 -0.007734
34 1.094864 0.003008 -0.009244
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